Functional Dissection of Sigma-like Domain in Antibiotic Regulatory Gene, afsR2 in Streptomyces lividans

  • Kim Chang-Young (School of Chemical Engineering and Biotechnology, Department of Biological Engineering, Inha University) ;
  • Park Hyun-Joo (School of Chemical Engineering and Biotechnology, Department of Biological Engineering, Inha University) ;
  • Kim Eung-Soo (School of Chemical Engineering and Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2006.09.01

Abstract

The 63-amino-acid-encoding afsR2 is a global antibiotics-stimulating regulatory gene identified from the chromosome of Streptomyces lividans. To dissect a putative functional domain in afsR2, several afsR2-derivative deletion constructs were generated and screened for the loss of actinorhodin-stimulating capability. The afsR2-derivative construct missing a 50-bp C-terminal region significantly lost its actinorhodin-stimulating capability in S. lividans. In addition, site-directed mutagenesis on amino acid positions of #57-#61 in a 50-bp C-terminal region, some of which are conserved among known Sigma 70 family proteins, significantly changed the AfsR2's activity. These results imply that the C-terminal region of AfsR2 is functionally important for antibiotics-stimulating capability and the regulatory mechanism might be somehow related to the sigma-like domain present in the C-terminal of AfsR2.

Keywords

References

  1. Champness, W. C. and K. F. Chater. 1994. Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp., pp. 61-93. In P. Piggot et al. (eds.). Regulation of Bacterial Differentiation. American Society for Microbiology, Washington D.C
  2. Champness, W. C, P. Riggle, T. Adamidis, B. Kenney, and D. Aceti. 1993. Genetic elements involved in global antibiotic regulation in Streptomyces coelicolor, pp. 227-233. In R. Baltz et al. (eds.), Industrial Microorganisms: Basic and Applied Molecular Genetics. American Society for Microbiology, Washington D.C
  3. Chater, K. F. 1990. Multilevel regulation of Streptomyces differentiation. Trends Genet. 5: 372-377 https://doi.org/10.1016/0168-9525(89)90172-8
  4. Floriano, B. and M. J. Bibb. 1996. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 21: 385-396 https://doi.org/10.1046/j.1365-2958.1996.6491364.x
  5. Hara, O., S. Horinouchi, T. Uozumi, and T. Beppu. 1983. Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129: 2939-2944
  6. Hong, S. K., M. Kito, T. Beppu, and S. Horinouchi. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J. Bacteriol. 173: 2311 -2318 https://doi.org/10.1128/jb.173.7.2311-2318.1991
  7. Hopwood, D. A. 1987. Towards an understanding of gene switching in Streptomyces: The basis of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B 235: 2257-2269
  8. Hopwood, D. A., M. J. Bibb, K. J. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, W. P. Smith, J. M. Ward, and H. Schrempf. 1985. Genetic Manipulation of Streptomyces -- A Laboratory Manual. The John Innes Foundation, Norwich, England
  9. Horinouchi, S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467 https://doi.org/10.1007/s10295-003-0063-z
  10. Horinouchi, S., O. Hara, and T. Beppu. 1983. Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Bacteriol. 155: 1238-1248
  11. Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S. K. Hong, K. Miyake, and T. Beppu. 1992. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95: 49-56 https://doi.org/10.1016/0378-1119(90)90412-K
  12. Horinouchi, S., F. Malpartida, D. A. Hopwood, and T. Beppu. 1989. afsB stimulates transcription of the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3(2) and Streptomyces lividans. Mol. Gen. Genet. 215: 355-357 https://doi.org/10.1007/BF00339742
  13. Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  14. Kim, E. S., H. J. Hong, C. Y. Choi, and S. N. Cohen. 2001. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203 https://doi.org/10.1128/JB.183.7.2198-2203.2001
  15. Matsumoto, A., S. K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by an eukaryotic-type protein kinase. Gene 146: 47-56 https://doi.org/10.1016/0378-1119(94)90832-X
  16. Matsumoto, A., H. Ishizukz, T. Beppu, and S. Horinouchi. 1995. Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica 9: 37-43 https://doi.org/10.3209/saj.9_37
  17. Park, H.-S., S.-H. Kang, H.-J. Park, and E.-S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71
  18. Park, N. S., J. S. Myeong, H.-J. Park, K. Han, S.-N. Kim, and E.-S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191
  19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning --A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  20. Stein, D. and S. N. Cohen. 1989. A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different development mutants. J. Bacteriol. 171:2258-2261 https://doi.org/10.1128/jb.171.4.2258-2261.1989
  21. Strauch, E., E. Takano, H. A. Baylis, and M. J. Bibb. 1991. The stringent response in Streptomyces coelicolor A3(2). Mol. Microbiol. 5: 289-298 https://doi.org/10.1111/j.1365-2958.1991.tb02109.x
  22. Vogtli, M., P. C. Chang, and S. N. Cohen. 1994. afsR2: A previously undeleted gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14: 643-653 https://doi.org/10.1111/j.1365-2958.1994.tb01303.x
  23. Zhao, X.-Q., K.-R. Kim, L.-W. Sang, S.-H. Kang, Y.-Y. Yang, and J.-W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353