Gene Disruption Using In Vivo and In Vitro Methylation in Streptomyces griseus

  • Maeng Jin-Soo (Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health) ;
  • Bae Kyung-Sook (Laboratory of Insect Resources, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwak Jang-Yul (Laboratory of Insect Resources, Korea Research Institute of Bioscience and Biotechnology)
  • 발행 : 2006.09.01

초록

Previous study demonstrated that the restriction barrier of Streptomyces griseus is almost completely bypassed by the Streptomyces-E. coli shuttle vectors passed through the E. coli GM161 strain and methylated with AluI and HpaII methyltransferases. The same DNA methylation of the genomic DNA fragments cloned the nonreplicative vectors generated integrative transformation and gene disruption of their chromosomal counterparts at high efficiencies in S. griseus. This result indicated that the efficiency of gene disruption depends on the efficient transfer of the incoming DNA into bacterial hosts.

키워드

참고문헌

  1. Anzai, H., Y. Kumada, O. Hara, T. Murakami, R. Itoh, E. Takano, S. Imai, A. Satoh, and K. Nagaoka. 1988. Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J. Antibiot. (Tokyo) 41: 226-233 https://doi.org/10.7164/antibiotics.41.226
  2. Babcock, M. J. and K. E. Kendrick. 1988. Cloning of DNA involved in sporulation of Streptomyces griseus. J. Bacterial. 170: 2802-2808 https://doi.org/10.1128/jb.170.6.2802-2808.1988
  3. Bickle, T. A. and D. H. Kruger. 1993. Biology of DNA restriction. Microbiol. Rev. 57: 434-450
  4. Choi, S.-S., J. H. Kim, J.-H. Kim, D.-K. Kang, S.-S. Kang, and S.-K. Jong. 2006. Functional analysis of sprD gene encoding Streptomyces griseus protease D (SGPD) in Streptomyces griseus. J. Microbiol. Biotechnol. 16: 312-317
  5. Gust, B, G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546
  6. Hillemann, D., A. Puhler, and W. Wohlleben. 1991. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res. 19:727-731 https://doi.org/10.1093/nar/19.4.727
  7. Hwang, E. I., B. S. Yun, S. W. Choi, J. S. Kim, S. J. Lim, J. S. Moon, S. H. Lee, and S. U. Kim. 2005. Isolation of sangivamycin from Streptomyces sp. A6497 and its herbicidal activity. J. Microbiol. Biotechnol. 15: 434-437
  8. Janssen, G. R. and M. J. Bibb. 1993. Derivatives of pUC18 that have Bglll sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133-134 https://doi.org/10.1016/0378-1119(93)90774-W
  9. Jiang, H. and K. E. Kendrick. 2000. Characterization of ssfR and ssgA, two genes involved in sporulation of Streptomyces griseus. J. Bacteriol. 182: 5521-5529 https://doi.org/10.1128/JB.182.19.5521-5529.2000
  10. Jo, Y.-Y., J. Liu, Y. Y. Jin, Y.-Y. Yang, and J.-W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Streptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496
  11. Kendrick, K. E. and J. C. Ensign. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155: 357-366
  12. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, U.K
  13. Kieser, T. and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: Integrating vectors and gene replacement. Methods Enzymol. 204: 430-458 https://doi.org/10.1016/0076-6879(91)04023-H
  14. Kudo, N, K. Ueda, H. Ikeda, S. Omura, T. Beppu, and S. Horinouchi. 1994. Plasm id-mediated gene disruption in Streptomyces griseus. Actinomycetologica 8: 17-20 https://doi.org/10.3209/saj.8_17
  15. Kwak, J., A. J. Dharmatilake, H. Jiang, and K. E. Kendrick. 2001. Differential regulation of ftsZ transcription during septation of Streptomyces griseus. J. Bacteriol. 183: 5092-5101 https://doi.org/10.1128/JB.183.17.5092-5101.2001
  16. Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248 https://doi.org/10.1111/j.1574-6968.2002.tb11138.x
  17. Kwak, J. and K. E. Kendrick. 1996. Bald mutants of Streptomyces griseus that prematurely undergo key events of sporulation. J. Bacteriol. 178: 4643-4650 https://doi.org/10.1128/jb.178.15.4643-4650.1996
  18. Kwak, J., L. A. McCue, K. Trczianka, and K. E. Kendrick. 2001. Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus. J. Bacteriol. 183: 3004-3015 https://doi.org/10.1128/JB.183.10.3004-3015.2001
  19. MacNeil, D. J. 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607-5612 https://doi.org/10.1128/jb.170.12.5607-5612.1988
  20. McCue, L. A., J. Kwak, J. Wang, and K. E. Kendrick. 1996. Analysis of a gene that suppresses the morphological defect of bald mutants of Streptomyces griseus. J. Bacteriol. 178: 2867-2875 https://doi.org/10.1128/jb.178.10.2867-2875.1996
  21. Oh, S. H. and K. F. Chater. 1997. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): Possible relevance to other organisms. J. Bacteriol. 179: 122-127 https://doi.org/10.1128/jb.179.1.122-127.1997
  22. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
  23. Ohnishi, Y., J. W. Seo, and S. Horinouchi. 2002. Deprogrammed sporulation in Streptomyces. FEMS Microbiol. Lett. 216: 1 -7 https://doi.org/10.1111/j.1574-6968.2002.tb11406.x
  24. Palmer, B. R. and M. G. Marinus. 1994. The dam and dcm strains of Escherichia coli -- A review. Gene 143: 1-12 https://doi.org/10.1016/0378-1119(94)90597-5
  25. Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15:66-71
  26. Tautz, N., K. Kaluza, B. Frey, M. Jarsch, G. G. Schmitz, and C. Kessler. 1990. SgrAl, a novel class-II restriction endonuclease from Streptomyces griseus recognizing the octanucleotide sequence 5'-CR/CCGGYG-3' [corrected]. Nucleic Acids Res. 18: 3087 https://doi.org/10.1093/nar/18.10.3087
  27. Tomono, A., Y. Tsai, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2005. Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 187: 5595-5604 https://doi.org/10.1128/JB.187.16.5595-5604.2005
  28. Ueda, K., C. W. Hsheh, T. Tosaki, H. Shinkawa, T. Beppu, and S. Horinouchi. 1998. Characterization of an A-factor-responsive repressor for amfR essential for onset of aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 180: 5085-5093
  29. Uguru, G. C., K. E. Stephens, J. A. Stead, J. E. Towle, S. Baumberg, and K. J. McDowall. 2005. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150 https://doi.org/10.1111/j.1365-2958.2005.04817.x
  30. Wu, P.-C. 1994. Cloning, nucleotide sequence determination, and transcriptional analysis of the histidase structural gene from Streptomyces griseus. The Ohio State University, Columbus, OH
  31. Zotchev, S. B., H. Schrempf, and C. R. Hutchinson. 1995. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis. J. Bacteriol. 177: 4809-4812 https://doi.org/10.1128/jb.177.16.4809-4812.1995