References
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
- Ahn, G.-T, J.-H. Kim, K.-M. Kang, M.-J. Lee, and I.-S. Han. 2004. BioPlace: A Web-based collaborative environment for effective genome research. J. Microbiol. Biotechnol. 14: 1081-1085
- Bieber, L. L. 1988. Carnitine. Annu. Rev. Biochem. 57: 261-283 https://doi.org/10.1146/annurev.bi.57.070188.001401
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 31 -37
- Bremer, J. 1983. Carnitine-metabolism and functions. Physiol. Rev. 63: 1420-1480 https://doi.org/10.1152/physrev.1983.63.4.1420
- Canovas, M., J. R. Maiquez, J. M. Obon, and J. L. Iborra. 2002. Modeling of the biotransformation of crotonobetaine into L-(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77: 764-775 https://doi.org/10.1002/bit.10157
- Castellar, M. R., M. Canovas, H. P. Kleber, and J. L. Iborra. 1998. Biotransformation of D-(+)-carnitine by resting cells of Escherichia coli O44 K74. J. Appl. Microbiol. 85: 883-890 https://doi.org/10.1046/j.1365-2672.1998.00601.x
- Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122 https://doi.org/10.1016/0378-1119(92)90454-W
- Engemann, C., T. Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and H. P. Kebler. 2005. Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183: 176-189 https://doi.org/10.1007/s00203-005-0760-2
- Gietz, R. D., R. H. Schiestl, A. R. Williams, and R. A. Woods. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360 https://doi.org/10.1002/yea.320110408
-
Home, D. W. and H. P. Broquist. 1973. Role of lysine and
$\varepsilon$ -N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. J. Biol. Chem. 248: 2170-2175 - Jung, H., K. Jung, and H. P. Klebar. 1993. Synthesis of L-carnitine by microorganisms and isolated enzymes. Adv. Biochem. Eng. Biotechnol. 50: 21-44 https://doi.org/10.1007/BFb0007385
- Jung, Y.-J., H. K. Kim, J. F. Kim, S.-H. Park, T.-K. Oh, and J.-K. Lee. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. 2005. J. Microbiol. Biotechnol. 15: 155-160
- Kleber, H. P. 1997. Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147: 1-9 https://doi.org/10.1111/j.1574-6968.1997.tb10212.x
- Lee, J.-S., J. Yu, H.-J. Shin, Y.-S. Kim, J.-K. Ahn, C.-K. Lee, H. Poo, and C.-J. Kim. 2005. Expression of Hepatitis C virus structural proteins in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 15: 767-771
- Naidu, G. S. N., I. Y. Lee, E. G. Lee, G. H. Kang, and Y. H. Park. 2000. Microbial and enzymatic production of L-carnitine. Bioprocess Eng. 23: 627-635 https://doi.org/10.1007/s004490000212
- Notredame, C., D. Higgins, and J. Heringa. 2000. A novel method for multiple sequence alignments. J. Mol. Biol. 302: 205-217 https://doi.org/10.1006/jmbi.2000.4042
- Obon, J. M., J. R. Maiquez, M. Canovas, H. P. Kleber, and J. L. Iborra. 1999. High-density Escherichia coli cultures for continuous L-(-)-carnitine production. Appl. Microbiol. Biotechnol. 51: 760-764 https://doi.org/10.1007/s002530051459
- Swiegers, J. H., N. Dippenaar, I. S. Pretorius, and F. F. Bauer. 2001. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: Three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18: 585-595 https://doi.org/10.1002/yea.712
-
Swiegers, J. H., F. M. Vaz, I. S. Pretorius, R. J. A. Wanders, and F. F. Bauer. 2002. Carnitine biosynthesis in Neurospora crassa: Identification of a cDNA coding for
$\varepsilon$ -N-trimethyllysine hydroxylase and its functional expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 210: 19-23 -
Tanphaichitr, V. and H. P. Broquist. 1973. Role of lysine and
$\varepsilon$ -N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J. Biol. Chem. 248: 2176-2181 - van Roermund, C. W. T., Y. Elgersma, N. Singh, R. J. A.Wanders, and H. F. Tabak. 1995. The membrane of peroxysomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14: 3480-3486
-
Vaz, F. M., S. van Gool, R. Ofrnan, L. Ijlst, and R. J. A. Wanders. 1998. Carnitine biosynthesis: Identification of the cDNA encoding human
$\gamma$ -butyrobetaine hydroxylase. Biochem. Biophys. Res. Commun. 250: 506-510 https://doi.org/10.1006/bbrc.1998.9343 -
Vaz, F. M., S. W. Fouchier, R. Ofman, M. Sommer, and R. J. A. Wanders. 2000. Molecular and biochemical characterization of rat
$\gamma$ -trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J. Biol. Chem. 275: 7390-7394 https://doi.org/10.1074/jbc.275.10.7390 - Wieland, O. H., T. Deufel, and I. Paetzke-Brunner. 1985. Free and esterified carnitine: Colometric method, pp. 481-488. In H. U. Bergmeyer (ed.). Methods of Enzymatic Analysis, Vol. 8, 3rd Ed. VCH, Weinheim