Application of Response Surface Methodology for Optimization of Lactic Acid Production Using Date Juice

  • Chauhan Kishor (Department of Biosciences, Sardar Patel University) ;
  • Trivedi Ujjval (Department of Biosciences, Sardar Patel University) ;
  • Patel K.C. (Department of Biosciences, Sardar Patel University)
  • 발행 : 2006.09.01

초록

Media components, including date juice, sodium acetate, peptone, and $K_{2}HPO_4$, which were screened by Plackett-Burman fractional factorial design, were optimized for lactic acid production from date juice using the response surface method (RSM). Sodium acetate, peptone (p<0.0001), and $K_{2}HPO_4$ (p=0.0029) were highly significant in influencing the lactic acid production. Close correlationship between predicted and experimental values was observed. When the optimum values of the parameters obtained through RSM (25.0 g/l date sugar, 15.0 g/l sodium acetate, 19.1 g/l peptone, and 4.7 g/l $K_{2}HPO_4$) were applied, lactic acid production (22.7 g/l) increased by 50.33%, compared with unoptimized media (15.1 g/l). The subsequent validation experiments confirmed the validity of the statistical model.

키워드

참고문헌

  1. Abdeltif, A. 2000. Effect of inorganic phosphate on lactate production by Lactobacillus helveticus grown on supplemented whey permeate. J. Chem. Technol. Biotechnol. 75: 223-228 https://doi.org/10.1002/(SICI)1097-4660(200003)75:3<223::AID-JCTB205>3.0.CO;2-5
  2. Chapin, A. 1993. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12:21-38 https://doi.org/10.1111/j.1574-6976.1993.tb00011.x
  3. Chauhan, K. H., U. B. Trivedi, and K. C. Patel. 2005. Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Biores. Technol. (in press), DOI:10.1016/j.biortech.2005.11.017
  4. Datta, R., S. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank. 1995. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16:221-231 https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  5. Fitzpatrik, J. J. and U. O'Keeffe. 2001. Influence of whey protein hydrolysate addition to whey permeate batch fermentation for producing lactic acid. Process Biochem. 37: 183-186 https://doi.org/10.1016/S0032-9592(01)00203-5
  6. Gawande, B. N. and A. Y. Patkar. 1999. Application of factorial design for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22. Biotechnol. Bioeng. 64: 168-172 https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5
  7. Gohel, V., D. Jiwan, P. Vyas, and H. S. Chatpar. 2005. Statistical optimization of chitinase production by Pantoea dispersa to enhance degradation of crustacean chitin waste. J. Microbiol. Biotechnol. 15: 197-201
  8. Greasham, R. L. 1983. Media for microbial fermentations, pp. 128-139. In Rehm, H. J., Read, P. A., and Stagier, P. (eds.). Bioprocessing (Biotechnology, Vol. 3). VCH Publisher Inc., New York
  9. Haaland, P.D. 1989. Statistical problem solving, pp. 1-18. In Haaland, P. D. (ed.). Experimental Design in Biotechnology. Marcel Dekker. Inc.. New York and Basel
  10. Kimberley, A. C. and C. Taylor. 1996. A simple colorimetric assay for muramic acid, lactic acid, glyceraldehyde, acetaldehyde and formaldehyde. Appl. Biochem. Biotechnol. 56: 49-58 https://doi.org/10.1007/BF02787869
  11. Krishnan, S., S. G. Prapulla, D. Rajalakshmi, M. C. Mishra, and N. G Karanth. 1998. Screening and selection of media components for lactic acid production using Plackett-Burman design. Bioproc. Eng. 19: 61-65 https://doi.org/10.1007/PL00009003
  12. Mahat, M. K., R. M. Illias, R. A. Rahman, N. A. A. Rashid, N. A. N. Mahmood, O. Hassan, S. A. Aziz, and K. Kamaruddin. 2004. Production of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. TSI-1: Media optimization using experimental design. Enzyme Microb. Technol. 35: 467-473 https://doi.org/10.1016/j.enzmictec.2004.07.008
  13. Miller, G. L. 1951. Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  14. Murthy, M. S. R. C, T. Swaminathan, S. K. Rakshit, and Y. Kosugi. 2000. Statistical optimization of lipase catalyzed hydrolysis of methyl oleate by response surface methodology. Bioproc. Bioeng. 22: 35-39
  15. Nair, S. R. and T. Panda. 1997. Statistical optimization of medium components for improved synthesis of pectinase by Aspergillus niger. Bioproc. Bioeng. 16: 169-173
  16. Nancib, A., N. Nancib, D. Meziane-Cherif, A. Boubendir, M. Fick, and J. Boudrant. 2005. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Biores. Technol. 96: 63-67 https://doi.org/10.1016/j.biortech.2003.09.018
  17. Naveena, B. J., Md. Altaf, K. Bhadriah, and G. Reddy. 2005. Selection of medium components by Plackett-Burtnan design for production of L(+) lactic acid by Lactobacilus amylophilus GV-6 in SSF using wheat bran. Biores. Technol. 96: 485-490 https://doi.org/10.1016/j.biortech.2004.05.020
  18. Peters, V. J. and E. E. Snell. 1954. Peptides and bacterial growth. J. Bacteriol. 67: 69-76 https://doi.org/10.1002/path.1700670108
  19. Plackett, R. L. and J. P. Burman. 1944. The design of optimum multifactorial 24 experiments. Biometrika 33: 305-325 https://doi.org/10.1093/biomet/33.4.305
  20. Pujari, V. and T. S. Chandra. 2000. Statistical optimization of medium components for enhanced riboflavin production by a UV mutant of Eremothecium ashbyii. Process Biochem. 36:31-37 https://doi.org/10.1016/S0032-9592(00)00173-4
  21. Rao, J. L. U. M. and T. Satyanarayana. 2003. Statistical optimization of a high maltose-forming, hyper thermostable and $Ca^{2+}$-independent $\alpha$-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95: 712-718 https://doi.org/10.1046/j.1365-2672.2003.02036.x
  22. Samuel, W. A. and Y. Y. Lee. 1980. Lactic acid fermentation of crude sorghum extract. Biotechnol. Bioeng. 22: 757-777 https://doi.org/10.1002/bit.260220404