Optimal Production and Characterization of Laccase from Fomitella fraxinea Mycelia

Fomitella fraxinea 균사체로부터 Laccase의 최적생산 및 효소적 특성

  • 박경미 (동국대학교 과학기술대학 생명공학과) ;
  • 박상신 (동국대학교 과학기술대학 생명공학과)
  • Published : 2006.09.01

Abstract

The culture conditions were investigated to maximize the production of laccase from Fomitella fraxinea mycelia. Among the tested media, mushroom complete medium (MCM) showed the highest production of the enzyme. The optimum culture medium was 2% dextrose, 0.4% $(NH_4)_{2}HPO_4$, 0.05% $Na_{2}HPO_{4}{\cdot}7H_{2}O$, and 0.05% KCl as carbon, nitrogen, phosphorus, and inorganic salt sources respectively. SDS-PAGE followed by laccase activity staining using 2,6-djmethoxyphenol as the substrate was performed to identify the laccase activity under culture conditions studied. Zymogram analysis of the culture supernatant showed a laccase band with a molecular mass of 50 kDa. The enzyme production from F. fraxinea was reached to the highest level after the cultivation for 10 days at $25^{\circ}C$ and initial pH 8. The enzyme activity of the culture supernatant was most active at $50^{\circ}C$ and pH 5.

장수버섯(Fomitella fraxinea)의 균사체 배양액으로부터 laccase를 생산하기 위한 최적 배양조건을 조사하였다. 복합 배지 중에서 MCM이 laccase의 생산에 가장 우수하였으며, laccase를 생산하기 위한 최적 배지조건은 탄소원, 질소원, 인산원 및 무기질원으로 각각 2% dextrose, 0.4% $(NH_4)_{2}HPO_4$, 0.05% $Na_{2}HPO_{4}{\cdot}7H_{2}O$ 및 0.05% KCl의 첨가에 의하여 효소의 생산이 가장 높았다. 따라서 E. fraxinea로 부터 laccase를 생산하기 위한 최적 배지조건은 2% dextrose, 0.4% $(NH_4)_{2}HPO_4$, 0.05% $Na_{2}HPO_{4}{\cdot}7H_{2}O$ 및 0.05% KCl 이다. 이상의 배지를 사용하여 배양온도 $25^{\circ}C$, 초기 pH 8.0에서 10일 동안 배양하였을 때 효소의 생산이 가장 증가함을 알 수 있었다. Staib agar plate 상에서 장수 버섯(Fomitella fraxinea) 균사체의 laccase활성여부를 확인할 수 있었으며 배양액 중의 효소 활성의 최적 pH와 온도는 pH 5.0과 $50^{\circ}C$ 이었다.

Keywords

References

  1. Arora, D. S. and P. K. Gill. 2000. Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technol. 73: 283-285 https://doi.org/10.1016/S0960-8524(99)00141-8
  2. Call, H. P. and I. Mucke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozymprocess). J. Biotechnol. 53: 163-202 https://doi.org/10.1016/S0168-1656(97)01683-0
  3. Das, N., S. Sengupta, and M. Mukhrjee. 1997. Importance of laccase in vegetative growth of Pleurotus florida. Appl. Environ. Microbiol. 63: 4120-4122
  4. de Souza, C. G. M., G. K. Tychanowicz, D. F. Souza, and R. M. Peralta. 2004. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J. Basic Microbiol. 44: 129-136 https://doi.org/10.1002/jobm.200310365
  5. Dong, J. L., Y. W. Zhang, R. H. Zhang, W. Z. Huang, and Y. Z. Zhang. 2005. Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica. J. Basic Microbiol. 45: 190-198 https://doi.org/10.1002/jobm.200410511
  6. Fukuda, T., H. Uchida, Y. Takashima, T. Uwajima, T. Kawabata, and M. Suzuki. 2001. Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem. Biophys. Res. Commun. 284: 704-706 https://doi.org/10.1006/bbrc.2001.5021
  7. Garzillo, A. M. V., and M. C. Colao. 1998. Laccase from the white rot fungus Trametes trogii. Appl. Microbiol. Biotechnol. 49: 545-551 https://doi.org/10.1007/s002530051211
  8. Heinzkill., M. L. Bech, T. Halkiler, P. Schneider, and T. Anke. 1998. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl. Environ. Microbiol. 64: 1601-1606
  9. Hou, H., J. Zhou, J. Wang, C. Dua, and B. Yan. 2004. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem. 39: 1415-1419 https://doi.org/10.1016/S0032-9592(03)00267-X
  10. Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1999. Anticomplementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus ostreatus. J. Microbiol. Biotechnol. 9: 450-456
  11. Lee, J. H., S. M. Cho, H. M. Kim, N. D. Hong, and I. D. Yoo. 1997. Immunostimulating activity of polysaccharides from mycelia of Phellinus linteus grown under different culture conditions. J. Microbiol. Biotechnol. 7: 52-55
  12. Lee, J. S., H. S. Baik, and S. S. Park. 2006. Purification and Characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J. Microbiol. Biotechnol. 16: 262-271
  13. Leontievsky, A. A., N. M. Myasoedova, B. P. Baskunov, C. S. Evans, and L. A. Golovleva. 2000. Transformation of 2,4,6-trichlorophenol by the white-rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation 11: 331-340 https://doi.org/10.1023/A:1011154209569
  14. Mikiashvili, N., V. Elisashvili, S. Wasser, and E. Nevo. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol. Lett. 27: 955-959 https://doi.org/10.1007/s10529-005-7662-x
  15. Niku-Paavola, M. -L., and L. Viikari. 2000. Enzymatic oxidation of alkenes. J. mol. Gatal., B Enzym. 10: 435-444 https://doi.org/10.1016/S1381-1177(99)00117-4
  16. Nonaka, T., H. Ishikawa, Y. Tsumuraya, Y. Hashimoto, and N. Dohmae. 1995. Characterization of a thermostable lysine-specific metallopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J. Biochem. (Tokyo) 118: 1014-1020
  17. Papinutti, V. L. and F. Forchiassin. 2003. Optimization of manganese peroxidase and laccase production in the South American fungus Fomes sclerodermeus (Lev.) Cke. J. Ind. Microbiol. Biotechnol. 30: 536-541 https://doi.org/10.1007/s10295-003-0077-6
  18. Park, S. S. and S. M. Hwang. 1999. Purification and characterization of a iron-containing superoxide dismutase from Lentinus edodes. J. Microbiol. Biotechnol. 9: 854-860
  19. Park, S. S., J. S. Lee, K. G. Bae, K. H. Yu, H. C. Han, and T. J. Min. 2001. Antioxidative activity and structural Analysis of the steroid compound from Fomitella fraxinea. Kor. J. Mycol. 29: 67-71
  20. Perez, J., J. Martinez, and T. de la Rubia. 1996. Purification and partial characterization of a laccase from the white rot fungus Phanerochaete favido-alba Appl. Environ. Microbiol. 62: 4263-4267
  21. Perry, C. R., M. Smith, C. H. Britnell, D. A. Wood, and C. F. Thurston. 1993. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J. Gen. Microbiol. 139: 1209-1218
  22. Prasad, K. K., S. V. Mohan, Y. V. Bhaskar, S. V. Ramanaiah, V. L. Babu, and P. N. Sarma. 1804. Laccase production using Pleurotus ostreatus immobilized on PUF cubes in batch and packed bed reactors: Influence of culture conditions. J. Microbiol. 43: 301-307
  23. Salony, S. Mishra, and V. S. Bisaria. 2006. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Appl. Microbiol. Biotechnol. 71: 646-653 https://doi.org/10.1007/s00253-005-0206-4
  24. Solano, F., E. Garcia, D. Perez, and A. Schez-Amat. 1997. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 63: 3499-3506
  25. Solano, F., P. Lucas-Elio, D. Lopez-Serrano, E. Ferandez, and A. Sanchez. 2001. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol. 204: 175-181 https://doi.org/10.1111/j.1574-6968.2001.tb10882.x
  26. Solomon, E. I., U. M. Sundaram, and T. E. Machonkin. 1996. Multicopper oxidase and oxygenases. Chem. Rev. 96: 2563-2605 https://doi.org/10.1021/cr950046o
  27. Staib, F., M. Seibold, E. Antweiler, B. Frohlich, S. Weber, and A. Blisse. 1987. The brown colour effect (BCE) of Cryptococcus neoformans in the diagnosis, control and epidemiology of C. neoformans in AIDS Patients. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 266: 167-177
  28. Ullah, M. A., C. T. Bedford, and C. S. Evans. 2000. Reactions of pentachlorophenol with laccase from Coriolus Versicolor. Appl. Microbiol. Biotechnol. 53: 230-234 https://doi.org/10.1007/s002530050013
  29. Ullrich, R., M. Huong Le, N. L. Dung, and M. Hofrichter. 2005. Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl. Microbiol. Biotechnol. 67: 357-363 https://doi.org/10.1007/s00253-004-1861-6
  30. Vasconcelos, A. F. D., A. M. Barbosa, R. F. H. Dekker, I. S. Scarminio, and M. I. Rezende. 2000. Optimizaton of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem. 35: 1131-1138 https://doi.org/10.1016/S0032-9592(00)00149-7
  31. Wang, J. W., J. H. Wu, W. Y. Huang, and R. X. Tan. 2005. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresource Technol. 97: 786-789 https://doi.org/10.1016/j.biortech.2005.03.025
  32. Wolf, S. L. 1993. Molecular and Cellular Biology, Wandsworth, Inc., California. pp. 287-292
  33. Xiao, Y. Z., X. M. Tu, J. Wang, M. Zhang, Q. Cheng, W. Y. Zeng, and Y. Y. Shi. 2003. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl. Microbiol. Biotechnol. 60: 700-707