최대 동일 길이를 갖는 여원 HGCA구성

Construction of Complemented Hybrid Group Cellular Automata with Maximum Equal Lengths

  • 발행 : 2006.09.01

초록

최근 무선 통신의 출현과 PDA, 스마트 카드와 같은 휴대용 장치의 발전으로 인해, 이에 대한 보안과 개인 정보보호에 대한 필요성이 대두되면서 암호학의 적용에 관심이 높아지고 있다. CA는 암 복호화를 공유할 수 있는 하드웨어 구현이 용이하다. 본 논문에서는 전이규칙 60, 102 또는 204를 갖는 선형 하이브리드 셀룰라 오토마타가 그룹 셀룰라 오토마타가 되는 조건을 제안하고 이 셀룰라 오토마타로부터 유도된 여원 하이브리드 그룹 CA의 상태전이 그래프에서 모든 사이클의 주기가 동일하고 가능한 최대 길이를 갖는 CA가 되기 위한 여 원벡터의 조건을 제시한다. 또한 여원 하이브리드 그룹 셀룰라 오토마타의 사이클들 간의 관계를 분석한다. 이는 Mukhopadhyay의 결과의 일반화이다.

Recently with the ever increasing growth of data communication, the need for security and privacy has become a necessity. The advent of wireless communication and other handheld devices like Personal Digital Assistants and smart cards have made the implementation of cryptosystems a major issue. The Cellular Automata(CA) can be programmed to implement hardware sharing between the encryption and decryption. In this paper, we give conditions for a linear hybrid cellular automata with 60, 102 or 204 to be a linear hybrid group cellular automata C. And we present the conditions which the complemented hybrid group cellular automata C' with complement vectors derived from C has maximum equal lengths in the state transition diagram of C' Also we analyze the relationship among cycles of C' These results generalize Mukhopadhyay's results.

키워드

참고문헌

  1. D. Mukhopadhyay and D.R. Chowdhury, Characterization of a Class of Complemented Group Cellular Automata, LNCS, Vol. 3305, 2004, pp. 775-784
  2. A.K. Das, Additive Cellular Automata: Theory and Applications as a Built-In Self-Test Structure, Ph. D. Thesis, I.I.T. Kharagpur, India, 1990
  3. A.K. Das and P.P. Chaudhuri, Efficient characterization of cellular automata, Proc. IEE(Part E), Vol. 137, 1990, pp.81-87
  4. A.K. Das and P.P. Chaudhuri, Vector space theoretic analysis of additive cellular automata and its application for pseudo-exhaustive test pattern generation, IEEE Trans. Comput., Vol. 42, 1993, pp. 340-352 https://doi.org/10.1109/12.210176
  5. S. Nandi, B.K. Kar and P.P. Chaudhuri, Theory and applications of cellular automata in cryptography, IEEE Trans. Computers, Vol. 43, 1994, pp. 1346-1357 https://doi.org/10.1109/12.338094
  6. S. Chakraborty, D.R. Chowdhury, P.P. Chaudhuri, Theory and application of nongroup cellular automata for synthesis of easily testable finite state machines, IEEE Trans. Computers, Vol. 45, 1996, pp. 769-781 https://doi.org/10.1109/12.508316
  7. S. Nandi and P.P. Chaudhuri, Analysis of periodic and intermediate boundary 90/150 cellular automata, IEEE Trans. Computers, Vol. 45, 1996, pp. 1-12
  8. S.J. Cho, U.S. Choi, Y.H. Hwang, Y.S. Pyo, H.D. Kim and S.H. Heo, Computing Phase Shifts of Maximum-Length 90/150 Cellular Automata Sequences, LNCS, Vol. 3305, 2004, pp. 31-39
  9. K. Cattell and J. Muzio, Analysis of one-dimensional linear hybrid cellular automata over GF(q), IEEE Transactions of Computers, Vol. 45, 1996, pp. 782-792 https://doi.org/10.1109/12.508317
  10. K. Cattell and J. Muzio, Synthesis of one-dimensional linear hybrid cellular automata, IEEE Transactions on Computer-Aided Design of Integrated Circuit and Systems, Vol. 15, 1996, pp. 325-335 https://doi.org/10.1109/43.489103
  11. S.J. Cho, U.S. Choi, and H.D. Kim, Analysis of complemented CA derived from a linear TPMACA, Computers and Mathematics with Applications, Vol. 45, 2003, pp. 689-698 https://doi.org/10.1016/S0898-1221(03)00028-2
  12. S.J. Cho, U.S. Choi, and H.D. Kim, Behavior of complemented CA whose complement vector is acyclic in a linear TPMACA, Mathematical and Computer modelling, Vol. 36, 2002, pp. 979-986 https://doi.org/10.1016/S0895-7177(02)00251-0
  13. S.J. Cho, U.S. Choi, Y.H. Hwang, H.D. Kim and Y.S. Pyo, Analysis of state-transition of SACA over $GF(2^{P})$, J. Kor. Info. Security and Cryptology, Vol. 15, 2005, pp.105-111
  14. B. Elspas, The Theory of autonomous linear sequential networks, TRE Trans. on Circuits Vol. CT-6, 1959, pp. 45-60
  15. S.J. Cho, U.S. Choi, H.D. Kim and Y.H. Hwang, Characterization of a class of the Complemented CA Derived from Linear Uniform Group CA, Submitted