DOI QR코드

DOI QR Code

A Study on the Improvement of Huff's Method in Korea : I. Review of Applicability of Huff's method in Korea

Huff 강우시간분포방법의 개선방안 연구 : I. Huff방법의 국내유역 적용성 검토

  • Jang Su-Hyung (Research Center for Disaster Prevention Science and Technology, Korea Univ.) ;
  • Yoon Jae-Young (Dept. of Env. System Engr., Korea Univ.) ;
  • Yoon Yong-Nam (Water Resources Dept., Saman Corporation)
  • 장수형 (고려대학교 방재과학기술연구센터) ;
  • 윤재영 (고려대학교 과학기술대학 환경시스템공학과) ;
  • 윤용남 (㈜삼안 수자원부)
  • Published : 2006.09.01

Abstract

The goal of this study is to improve Huff's method which is the most popular method for rainfall time distribution in Korea. As the first step, we reevaluated the context of Huff's original research motivations, geography and rainfall pattern of study area, and compared that to Korean situations. In original Huff's results, no change in temporal distribution characteristics were found for different rainfall durations. This was found to be different from Korean situations. Furthermore, results from the MOCT(Ministry of Construction and Transportation) version of Huff's method is on a gage basis not on a watershed basis, thus making it difficult to select cumulative rainfall curves representative of a watershed. In addition, all rainfall data regardless of their magnitude were used in the MOCT version of Huff' method which is different from original Huff's which screened out data by using a threshold value of 25.4mm. For both point and areal mean rainfall, time distribution characteristics of rainfall for various durations were found to be different. This was statistically proven by K-S test at 5% significance level as some cumulative rainfall curves developed from the rainfall data of certain durations were found to be not significant with cumulative rainfall curves developed from the rainfall data of all durations. Therefore, in order to apply Huff's method to Korean situations, it is recommended that dimensionless cumulative curve must be developed for various rainfall duration intervals using rainfall data greater than a certain threshold value.

Huff(1967)의 연구배경과 지형 및 강우특성을 국내유역과 비교하고 Huff(1967) 방법을 국내에 적용한 건설교통부(2000) Huff의 한계점을 파악하였으며, 국내 강우가 갖는 지속기간별 시간분포특성을 검토함으로써 국내유역에 적합한 Huff방법의 개선방안을 위한 기초연구를 목표로 하였다 Huff(1967)의 연구유역과 본 연구유역의 점강우가 갖는 특성에는 차이가 있었다. 그리고 건설교통부(2000) Huff 방법은 관측소별로 분석되어 유역을 대표하는 누가곡선의 채택에 어려움을 갖게 되며, 이용된 강우사상은 강우총량의 크기에 관계없이 모든 자료를 이용하여 점우량 25.4mm 이상을 대상으로 비교한 결과와 차이가 있는 것으로 분석되었다. 또한, 본 연구 대상유역의 점강우와 면적평균 강우에서 지속기간별로 강우의 시간분포 특성이 다양한 것으로 분석되었으며, 이는 K-S 검정결과 5% 유의수준에서 지속기간별로 작성된 일부 누가곡선이 전 지속기간에 대해 작성된 누가곡선과 유의하지 않는 것으로 분석되어 지속기간별 시간분포 특성이 통계학적으로 입증되었다. 따라서 Huff(1967) 방법을 국내유역에 적용하기 위해서는 적정 수준 이상의 총량을 갖는 강우사상을 대상으로 유역의 대표성, 강우의 지속기간별 특성이 반영된 누가곡선이 작성되어야 할 것으로 판단되었다.

Keywords

References

  1. 건설교통부 (2000). 1999년도 수자원 관리기법개발연구조사 보고서 : 지역적 설계 강우의 시간적 분포
  2. 건설교통부 (2002). 하천정비 기본계획수립 및 하천정비대장 작성 지침
  3. 건설교통부 (2005). 하천설계기준.해설 pp.203-203
  4. 오규창 (2005). '유역종합치수계획 수립 현황 및 문제점.' 한국수자원학회 학술발표회 기획세션 II, 한국수자원학회
  5. 이상렬 (2005) '유역종합치수계획의 바람직한 방향설정.' 한국수자원학회 학술발표회 기획세션 II, 한국수자원학회
  6. 윤용남, 장수형, 강성규, 박민석 (2004). '설계홍수량 산정을 위한 적정 설계강우시간분포의 개발.' 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp.54-54
  7. 정종호, 윤용남 (2005). 수자원설계실무. 도서출판 구미서관
  8. Bonta, J. V., and Rao., A. R. (1987). 'Factors affecting development of huff curves.' Transactions of the American Society of Agricultural Engineers, Vol. 30, No.6, pp. 1689-1693 https://doi.org/10.13031/2013.30623
  9. Huff F. A. (1967). 'Time distribution of rainfall in heavy Storm.' Water Resources Research, Vol. 3, No.4, pp. 1007-1019 https://doi.org/10.1029/WR003i004p01007
  10. Huff F. A. (1986). 'Urban hydrology review.' Bulletin of the American Meteoroiogical Society, Vol. 67, No.6, pp. 703-712 https://doi.org/10.1175/1520-0477-67.6.703
  11. Huff F. A. (1990). Time distribution of heavy rainstorms in illinois. Illinois State Water Survey, Circular 173, p. 19
  12. Knapp, H. V., and Terstriep., M. L. (1981). Effects of basin rainfall estimates on dam safety design in illinois. Illinois State Water Survey Contract Report 253, p. 57
  13. Pani, E. A,. and Haragan., D. R. (1981). A comparison of Texas and Illinois temporal rainfall distributions, Preprints, 4th Conference on Hydro-meteorology, American Meteorological Society, Boston, MA, pp. 76-80
  14. Pilgrim, D. H., and Cordery, I. (1975). 'Rainfall temporal patterns for design flood.' Journal of Hydraulic Division, ASCE, Vol. 101, No. HY1, pp. 81-95
  15. Soil Conservation Service. (1972). Hydrology. SCS National Engineering Handbook, U.S. Department of Agriculture, Washington, DC, p. 110
  16. Tholin, A. L., and Keifer., C. J. (1960). The hydrology of runoff. Transactions. American Society of Civil Engineers, 125, pp. 1300-1309
  17. U.S. Army Corps of Engineers. (1952). Standard project flood determinations. Civil Engineer Bulletin 52-8, p. 19
  18. Viessrnan, W. Jr., Lewis, G. L., and Knapp, J. W.. (1989). 'Introduction of Hydrology, third edition : New York' Harper and Row Publishers, 700 p
  19. Ward, A. B., Bridges, T. and Barfield., B. (1900). 'An evaluation of hydrologic modeling techniques for determining a design storm hydrograph.' Proc., International Symposium on Urban Storm Runoff. pp. 59-69

Cited by

  1. A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.275
  2. Development of a Rainfall Time Distribution Considering Characteristics of Temporal Variability of Extreme Rainfall Events vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.23
  3. Improvement of Huff's Method Considering Severe Rainstorm Events vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.985
  4. Analysis of the Temporal Distribution of Rainfall Using the Heavy Storm Distribution Method Reflecting Concentrated Duration Characteristics in Busan vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.613
  5. Real-Time Urban Inundation Prediction Combining Hydraulic and Probabilistic Methods vol.11, pp.2, 2019, https://doi.org/10.3390/w11020293