PARTIAL INTRINSIC BAYES FACTOR

  • Joo Y. (Division of Biostatistics, University of Florida) ;
  • Casella G. (Department of Statistics, University of Florida)
  • Published : 2006.09.01

Abstract

We have developed a new model selection criteria, the partial intrinsic Bayes factor, which is designed for cases when we select a model among a small number of candidate models. For example, we can choose only a few candidate models after exploring scatter plots. By simulation study, we have showed that PIBF performs better than AIC, BIC and GCV.

Keywords

References

  1. AITKIN, M. (1991). 'Posterior Bayes factors', Journal of the Royal Statistical Society, Ser. B, 53, 111-142
  2. AKAIKE, H. (1973). 'Information theory and an extension of the maximum likelihood principle', In Second International Symposium on Information Theory (Petrov, B. N. and Csaki, F., eds.), 267-281
  3. ATKINSON, A. C. (1978). 'Posterior probabilities for choosing a regression model' , Biometrika, 65, 39-48 https://doi.org/10.1093/biomet/65.1.39
  4. BERGER, J. O. AND PERICCHI, L. R. (1996). 'The intrinsic Bayes factor for linear models', In Bayesian Statistics 5 (Bernardo, J. M. et al., eds.), 23-42, Oxford University Press, New York
  5. BRUMBACK, B. A., RUPPERT, D. AND WAND, M. P. (1999). Comment on 'Variable selection and function estimation in additive nonparametric regression using a data-based prior' (by Shively, T. S. et al.), Journal of the American Statistical Association, 94, 794-797 https://doi.org/10.2307/2669991
  6. CASELLA, G. (2001). 'Empirical Bayes Gibbs sampling', Biostatistics, 2, 485-500 https://doi.org/10.1093/biostatistics/2.4.485
  7. DUDOIT, S., YANG, Y. H., CALLOW, M. J. AND SPEED, T. P. (2002). 'Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments', Statistica Sinica, 12, 111-139
  8. GEISSER, S. AND EDDY, W. F. (1979). 'A predictive approach to model selection', Journal of the American Statistical Association, 74, 153-160 https://doi.org/10.2307/2286745
  9. GELFAND, A. E. AND DEY, D. K. (1994). 'Bayesian model choice: asymptotics and exact calculations', Journal of the Royal Statistical Society, Ser. B, 56, 501-514
  10. HASTIE, T., TIBSHIRANI, R. AND FRIEDMAN, J. (2001). The Elements of Statistical Learning, Springer-Verlag, New York
  11. Joo, Y. (2003). Evaluation of Model Selection Criteria in Log Spline Models, Ph. D. Dissertation, Cornell University, New York
  12. JUDGE, G. G., HILL, R. C., GRIFFITHS, W. E., LUTKEPOHL, H. AND LEE, T. C. (1988). Introduction to the Theory and Practice of Econometrics, 2nd ed., John Wiley & Sons, New York
  13. O'HAGAN, A. (1991). Discussion on 'Posterior Bayes factors' (by Aitkin, M.), Journal of Royal Statistic Society, Ser. B, 53, 136
  14. PENA, D. AND TIAO, G. C. (1992). 'Bayesian robustness functions for linear models', In Bayesian Statistics 4 (Bernardo, J. M. et al. eds.), 365-389, Oxford University Press, New York
  15. RUPPERT, D., WAND, M. P. AND CAROLL, R. J. (2003). Semiparametric Regression, Cambridge University Press, Cambridge
  16. SCHWARZ, G. (1978). 'Estimating the dimension of a model', The Annals of Statistics, 6, 461-464 https://doi.org/10.1214/aos/1176344136