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PARTIAL INTRINSIC BAYES FACTOR

Y. Joo! AND G. CASELLA?

ABSTRACT
We have developed a new mode] selection criteria, the partial intrinsic
Bayes factor, which is designed for cases when we select a model among a
small number of candidate models. For example, we can choose only a few
candidate models after exploring scatter plots. By simulation study, we have
showed that PIBF performs better than AIC, BIC and GCV.

AMS 2000 subject classifications. Primary 62F15; Secondary 62A15.
Keywords. Bayes factor, intrinsic Bayes factor, Bayesian model selection.

1. INTRODUCTION

We often select a model from a finite number of candidate models, all of
which encompass a small model. For example, suppose that cubic regression
spline model (Ruppert et al., 2003) is applied to capture a curvy trend in Figure
1.1. From this scatter plot, analyst knows that the trend may not be explained
with linear, quadratic or cubic regressions. A cubic regression spline with 5
equally spaced knots and a natural cubic regression spline (Hastie et al., 2001)
with 4 equally spaced knots are applied. In this case, all cubic regression spline
models have four common regression parameters corresponding to intercept, lin-
ear, quadratic and cubic terms. As an example of regression analysis, some of
explanatory variables may be obviously important and need be included in the
finally-chosen model, while importance of others should be verified. All candidate
models have these important variables commonly. The idea of the Partial Intrin-
sic Bayes Factor (BFP-™) is to incorporate this information into a model selection
criterion. Most of classical model selection criteria, such as AIC (Akaike, 1973)
and BIC (Schwarz, 1978), do not incorporate such knowledge into the selection
procedure. Although the prior distribution in a Bayesian framework might be
used to employ this information, there is not any clearly suggested objective rule
to convert this information into a prior density.
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FIGURE 1.1. M vs. A plot from apo Al microarray experiment, (Dudoit et al., 2-
002). The cubic regression spline with 5 equally spaced knots is drawn in o dark
line and a natural cubic regression spline with 4 equally spaced knots is in a light
line.

The BFP-" divides the parameters into two groups. While the regular intrin-
sic Bayes factor (BF™r"si¢; Berger and Pericchi, 1996) starts with improper
noninformative priors for every parameter, the BFP-™ uses proper informative
priors for the parameters that the analyst believes are important and starts with
improper noninformative priors, as in BF™7"s¢ for the parameters of which
importance he/she wants to verify. For example, suppose that parameters 4
and 0p are known or assumed to be important and should be included in the
finally-chosen model. Also suppose that importance of parameters 8¢ and 6p
should be verified. In this case, we may consider four possible candidate models:
a model with only 84 and fp, a model with 84, 0 and f¢, a model with 04,
fp and Op, a model with 84, 0, 8c and 0p. Note that all candidate models
has 64 and 0 commonly because they should be in the finally-chosen model
among candidates. To use the BFP-® candidate models do not have to have
nested structure. However, candidate models should share common explanatory
variables (parameters).

Various types of Bayes factors in other researches are summarized in Section 2.
General definition of partial intrinsic Bayes factor (BFP-™) is described in Section
3. Also, BFP-™ for regression spline model is calculated. Simulation study in
Section 4 shows that the BFP-™ performs better than AIC, BIC, BF™#rinsic 554
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the generalized cross validation (GCV,,) for penalized least square estimation
(Brumback et al., 1999). Finally, in Section 5, these model selection criteria are
applied to the dye bias correction of cDNA microarray data.

2. VARIOUS BAYES FACTORS

In many literatures (Gelfand and Dey, 1994), the Bayes factor is described as

prsd = TOUMLY)/m(03 My, y) J £ (ylby, Mi)m(61|M1)d0r _ m(y| M)

(61| My) /(62| Mz) [ £(y|62, M2)m(62] M2)db, m(y|M2()2’ y
where f(y|6;, M;) is the likelihood function of the model M; that has the param-
eter, 0; and m(6;|M;) is the prior of §; in the model M;. Here f(-) and =(-) are
used as general notations for the probability density function of observation and
parameters. When 7(M;) = n(Ma) = 1/2, the posterior odds and the Bayes
factor are one-to-one functions. The Bayes factor is closely related to the ratio
of maximum likelihoods in a sense that the Bayes factor integrates out 6; in the
likelihood instead of maximizing it. We will call this the standard Bayes factor,

BF**. Also, various Bayes factors have been developed using different types of
predictive distributions:

f(ysvl‘y3c17M1)
f(y3u2|ysc27M2)’

BFi3 =

where

F W s, M) = / £ (e 165, M) (65 ys.e, M )d6;

= J £ (s,:105, Mi) f (ys,: 105, Mi)m(6;| M;)db;
I F(Ysei10s, Mi)m(6: M;)df;
— f f(yS\oi, Mz)W(Oz\MZ)del
[ f(ys..10:, M;)m(6;| M;)db;

with § = {1,2,...,n} = 8y U Sci, Sus C S and s¢; C S. Data label sets S, sy
and s are used to indicate that y,_, and ys,, are subsets of the whole data set
ys . We will call s,; the validation set (for checking goodness of fit) and s the
construction set (for constructing 7(6;|ys,,, M;)). Two construction sets, s,1 and

Sy2, are not necessarily the same. Neither are the two validation sets, s and
seo. However, for simplicity of notation, we will use a common notation s, for
sy1 and sy, and s, for s.; and s, when the discrimination between them is not



264 Y. Joo AND G. CASELLA

necessary. Gelfand and Dey (1994) summarized various Bayes factors in terms of
sc and s, as follows.

(i) BF**: s, = S and s, = {-} yield the standard marginal density and the
standard BF in (2.1).

(i) BFimtrinsic; 5 — G\ s. and s, is a minimal set to make the posterior density
proper. This is so called the intrinsic BF and is often used with improper
noninformative priors (Berger and Pericchi, 1996).

(iii) BFO'Hagan; 5 — S\ s, and s, = {1,2,...,[pn]}, where 0 < p < 1 and
[] denotes the greatest integer function, are used in Atkinson (1978) and
O’Hagan (1991).

(iv) BFP4T: Pefia and Tiao (1992) proposed to use s, = small set and s, =
S\ sy.

(v) BFCV: s, = {r} and s, = S\ {r} results in the so-called cross validation
Bayes factor, which appeared in Geisser and Eddy (1979). To remove the
effect by an arbitrary choice of r, they suggested the pseudo Bayes Factor:

m

3
m2

BFpseudo —_

N
Where m; = ].—.[1 [f(ysv |ysc7 Mi)]svz{’r}'
=
(vi) BFPosterior. o — S and s, = S yields Aitkin’s (1991) posterior BF. This is
similar to the idea of a frequentist likelihood calculation in the sense that it
uses all observations to estimate parameters (or distribution of parameters)
and evaluate the likelihood based on it.

3. PARTIAL INTRINSIC BAYES FACTOR FOR REGRESSION SPLINE
MODELS

3.1. Partial noninformative Bayes factor and partial intrinsic Bayes factor

The partial noninformative Bayes factors are developed for the case when a
small model is commonly nested in all candidates. The BFP-"" divides param-
eters into two groups, one group (051)) for parameters that are included in all
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candidate models in common and another (Hz(n)) for the other parameters. Inter-
est of model selection is finding whether 02(") should be included in the finally-
chosen model or not. Then, the BFP-"°" uses a proper informative proper priors
7r(9§0|Mi,§) for the first group of parameters and estimates the hyper param-
eters ¢ using all observations, and uses a noninformative prior 7r(9§")) for the
parameters in the second group. This is summarized as follows.

DEFINITION 3.1. (Partial noninformative Bayes factor (BFP-"°")). For model
M;, let

& = argmax f(ys|M;€),
where

Flys|M;, &) = / / Fusl6®, 68 M) (6| M) m (0P| M;, &) d6l™ de®

w(ﬁf") [M;) is a noninformative prior, and w(6§i){Mi,§) is an informative proper
distribution with hyper parameter £&. The partial noninformative Bayes factor is
defined as

flysiMi, &)

flysIMz, &)

However, because noninformative improper priors are sensitive to constants

that can be multiplied to improper prior, we propose to use intrinsic Bayes factor
(Berger and Pericchi, 1996) set-up for the noninformative prior as follows.

BFF;™™ =

DerFINITION 3.2. (Partial intrinsic Bayes factor (BFp'mt)). Let s, = S\ sc
(n)

and s. is a minimal set to make the posterior density of 6,
intrinsic Bayes factor is defined as

proper. The partial

‘ M)
BFp_lnt — f(ysul |ysc1’ 1 , 3'1
12 f(ysvzlysc27 MZ) ( )
where
oy s M / / FWe,: 16,607, M)T (6 [y, M) (62 [ys,., My, €)d8

[ fysl6®, 67, M0 | My)w (61| M5, €)dot™ dol? a.
[ F(ye 169,67 M)w(ef"’lMi)vrw?’iMi,f)de‘”>d9“>

2 Y7

2)
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In general, the prior setup of BFP-™ has the following motivation. By es-
timating £, major portion of probability density in the informative prior of 02@
tends to be allocated closed to the posterior mode. In posterior probability cal-
culation, information in the likelihood updates both informative prior of 01@ and
noninformative prior of ng). Because informative prior of 91@ is already estimated
using the likelihood information, the likelihood makes less contribution in updat-
ing the posterior distribution of 91@ than that of 01(”). In other words, posterior
of 01(") can react more sensitively to the likelihood information in BFP-* than
in BF*™mnsi¢ Although this paper focuses on comparing the regression models
or linear smoothers as candidates, the idea of the BFP™ can be generalized to
any situation when a group of the same parameters are commonly used in all

candidate models.

3.2. Partial intrinsic Bayes factor for the linear regression models

In this section, we calculate partial intrinsic Bayes factor for the linear re-
gression models. Also, the relationship between the partial intrinsic Bayes factor
and the intrinsic Bayes factor, which uses improper noninformative priors for all
parameters, is shown. Consider regression models

y=Xy¥+e=Xqoa+ Xpgl +e¢, (3.3)

where o = (aa,...,0p,)7, B = (ﬂl,...,BpB)T, Xo and X are corresponding
design matrix of o and 8, Xy = (Xa, Xs) and € ~ N(0,02I). For these models,
« is the parameter vector, of which all elements are known or assumed to have
none zero values and are included in all candidate models. Parameter vector 3
may have non-zero elements.

3.2.1. Partial intrinsic Bayes factor. The parameters 8 and o have improper
noninformative priors and o« ~ N(@,%,). For convenience, the notation that
indicates the model will be omitted from now on unless it is necessary. For exam-
ple, 8 = 0; and f(y|0) = f(y|0;, M;). Also, suppose @ and I, are given for now.
If [ f(ys,|0)m(0)d0 and [ f(ys|@)m(0)do are calculated, we can get the intrinsic
Bayes factor from equations (3.1) and (3.2). Mathematically, logics in the calcula-
tions of [ f(ys,|0)7(8)df and [ f(ys|0)m(#)dé are equivalent. Therefore, we will
focus on the general calculation of [ f(y|8)w(6)dé for now. For the calculation of
[ f(y|8)=(0)df, we will use Bayes theorem,

1610)r(0)
[ roiermoys = ZrGE=. &4
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This model has 8 = {a,8,0}. Assume n(f|o) = 1, and a|o ~ N(a,%,). The
overline of hyper parameter, i.e. @, is used to indicate a parameter in the prior
distribution. We will use the double overlines for the parameters in the posterior
distribution, i.e. @. For convenience of calculation, set A'= ¥;'¢?%. Then

r(alo) = (2m) P2 [Se " exp { — (o - BTES (@~ @)/2)
<o Prexp{— (a— )T A(e ~@)/20%}
= o P exp{ ~ (¥ - 9)T By - ¥)/20%},

B — A Opapﬁ
Oiﬂﬁpa Opez’g

and 0;; is the 7 x j matrix of which all elements are zeros. The hyper parameter, B

where

iny = (ET,BT)T, can be any vector of finite constants because it will disappear

when it is multiplied with 0. Finally, assume n(g) = o~ !.

Hence, with the assumption of the independence between a|o and j|o,
m(¥,0) = w(alo)m(Blo)n(0) x o P " exp { — (¥ — )T B(y — ¥)/207}.
Also,

Fl,0) = (2m) o " exp { — (v — X9)"(y — Xv)/20°}

x o "exp { — (y — X¢)"(y — Xv)/20%}.

Hence,

Ty, aly) < f(yly, o)m (¥, o)
= (2m) ™20 " exp { — (y — X9)T(y — X)) /20%}
x(2m) P/l P AV 2exp { — (a —@)TA(a —@)/20%}.  (3.5)

Equation (3.5) is the numerator in equation (3.4). Also,

(9, 0ly) oc o P exp { ~ ((y — X9) T (y — X¥)
+( — )" By —¥))/20°}. (3.6)
For calculation of the denominator in equation (3.4), the posterior distribution,

we will use equation (3.6) as follows. The posterior calculation becomes similar
to the case when a multivariate normal distribution is assigned for all elements
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in 1 and m(0) = 0~1. Also, 7(c) = o~! can be considered as a special case of
the kernel in the inverted gamma-2 (IG2) probability dentisy:

—a

T (0_2) = I‘IEE) (0-2)6—16_5(0_2) : Gamma(a, b)

%" g o 7
— (o) = =0 e IG2( ,b)

x o2 1= . the kernel of IG2(g,b). (3.7)

If @ = b = 0, then the kernel becomes c~!. Though the parameters in the
gamma or the IG2 distributions should be greater than 0, we can still treat this
as a special case of the kernel of the IG2 distribution (3.7) because kernels do
not have the same restrictions as probability density functions.

Then, we can use the calculations in other studies (Judge et al., 1988, pp. 306—
311) for the proper informative prior setup, in which ¢ has a normal distribution
and ¢ has a inverted gamma-2 distribution for this problem. Finally, the BF?-"

is calculated as (see Appendix for detailed calculation):

(ysul |yscl ? Ml)
(ys‘u2 |y5c2’ M2)

1T 1] 2T 1/2
_ (2m)(Cloa-Cloa) 2 (131 + XL Xoal/ | + x5 Xizt)

BFp_'mt -

1By + X x ) /1By + x T x 2
UHClear) =P 1}/2 =m0 /2
(L =25 )/2) T({C(e) ~poal/D) by "B T
T((n~ ps2)/2) T({C(sc1) ~ pp1}/2) FEHOCw) 722172 3l=ps 72

where superscript ! indicated model M; and

(y = X9) (v — X¥) + ( — 9)TBE — )
2
_ yTy+ ¥ BY - (BY+ XTX$)(B + XTX)"{(BY + XTXY)
5 .

b=

In this paper, we adopted the idea of arithmetic mean IBF (Berger and Peric-
chi, 1996) to remove dependence of s.. The construction set, s, is randomly and
repeatedly selected from S. Then, BFP-™ is calculated for each s.. The average
of BFP- is used as an model selection criterion in actual applications.
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3.2.2. Intrinsic Bayes factor. All parameters (a, 8 and o) have improper nonin-
formative priors. Let the prior for the parameters for model 7 be

x (d,m)aw Mj) = 1/g,

Then, assuming that s,1 = sy2 = $, and s = sc2 = S, the intrinsic Bayes factor
is (Berger and Pericchi, 1996)

BFintrinsic — |XE]TXE]|1/2 |yS - X,[S?]ﬁ.[sg]ln_paz—pﬁz I‘((TL —Pa1 — D3 1)/2)
T((C(sc) — pa2 — pp2)/2) | XET x[H|1/2

F((C(sc) —DPal — Pp 1)/2) |X~£E]TX.2] |1/2
|ysc - X{L”’(Z}‘[s];] |C(5c)—pa 1-Pg1

[

. 3.9
s, — Xa2gs | )P am 0

The intrinsic Bayes factor in equation (3.9), BFY""¥"¢  can be obtained using
equation (3.8) by setting sy1 = Sy2 = Sy, Sc1 = Se2 = S¢, Bj = Ops,pp; and Poj = 0.
The BF™rinsic ig g special case of the BFP-"¢,

3.3. Estimation of informative prior using empirical Bayes Gibbs sampling

In this subsection, we demonstrate the estimation of X, using empirical Bayes
Gibbs sampling. To make the model selection criterion conservative, we set @=0.
Suppose A = )\_zfpapa, where I, is the p, X p, identity matrix. Equivalently,
o = A2021, ;.. Remind that o2 is the variance of € and is included in definition
of 3, for calculational convenience of BFP-t,
use empirical Bayes Gibbs sampling (Casella, 2001), which is basically an EM

algorithm in Bayesian framework. Detailed calculation for this algorithm is in

To estimate A\, we propose to

Appendix.

4. SIMULATION STUDY

We conducted simulation studies to evaluate the performance of the BFP-i"

with sample size 50 and 100, considering a cubic regression model and cubic
regression spline models with 1, 2 and 3 (equally spaced) knots as candidate
models. We used the setup of priors described in Section 3.2. In this case,
four regression parameters (intercept and three parameters corresponding to the
first, second and third order terms) in the cubic regression are the commonly
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used parameters, « in (3.3), in all candidate models. These parameters will be
included in the finally chosen model. Parameters corresponding to each knot are
the parameters, 3 in (3.3), to be verified.

Using simulated data sets from each of the candidates, we estimated and
recorded the probability of choosing each candidate model in Tables 4.1, 4.2, 4.3
and 4.4. The specific model that is used as the true model in each simulation
study is described in the title of each table. For example, when 50 (=n) observa-
tions are simulated from a cubic regression model, y = 1+ z + 2% + 23 + N(0, 2?)
and X € [0,2], the BFP™ chooses a cubic regression model without any knot
with probability 0.864 in 5,000 simulation runs (See Table 4.1). The probability
of choosing the correct model is typed in bold in each table. The BF™rinsic AIC,
BIC, GCVy and GCV,, (Brumback et al., 1999) are considered as competitors of
the BFP-". Model selection criteria are called conservative when they tends to
choose a smaller candidate model. AIC and BIC are well-known anti-conservative
model and conservative selectors, respectively. Most of other popular model se-
lectors are somewhere between AIC and BIC in terms of conservativeness. GCV,,
is the generalized cross validation with a smoothing parameter w. Brumback et
al. (1999) suggested to use GCV,, as a model selection criterion for regression
spline models. Even though our interests is knot selection rather than smooth-
ing parameter estimation, we considered GCV,, in simulation study because it is
widely used. GCVy is GCV,, with w = 0. In other words, GCVy is the GCV that
we use for regular regression models without any smoothing parameter.

When data come from a cubic regression model (Table 4.1), the BFP-™ does
not perform best. But it performs almost as good as the best performing model
selection criteria, BF™ ¢ and BIC, and does much better than AIC, GCV,
and GCV,,. Because BIC has a big penalty term for overfitting, it has a strong
tendency to choose a smaller model. BF¥Tinsic ig asymptotically equivalent to
BIC (Joo, 2003). Because the smallest candidate (cubic regression model) is the
true model, BIC and other asymptotically equivalent model selectors are expected
to perform well. When the data come from a cubic regression spline model with 1
knot (Table 4.2), the BFP-" performs best. Particularly, when n=50 (n is small),
the BFP-"™ performed much better than others. The BFP-* chooses the correct
model 85.5% of cases, but the others choose 40 — 65%. When data come from
a cubic regression spline model with 2 knots (Table 4.3), the BFP-™ dominates
all other criteria. When the data come from a cubic regression spline model
with 3 knots (Table 4.4), the BFP-"™ performs best along with AIC and GCV,,.
Because AIC has a small penalty term, it has strong tendency to choose a bigger
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GCVy is asymptotically equivalent to AIC. In this case, the biggest
candidate (cubic regression model) is the true model. Therefore, AIC and other

asymptotically equivalent model selectors are expected to perform well.

TABLE 4.1. Probability of selecting the model when the data is simulated from a
cubic regression model: y =1+ z + 2 +2° + N(0,2%) and X € [0,2]

n BEP-nt BFtrinsic
1 2 1 2
50 | 0.864 | 0.084 | 0.032 | 0.020 | 0.910 | 0.064 | 0.022 | 0.004
100 | 0.879 | 0.095 | 0.017 | 0.009 | 0.938 | 0.051 | 0.011 | 0.000
n BIC AlIC
1 2 1 2
50 | 0.918 | 0.051 | 0.023 | 0.008 | 0.712 | 0.135 | 0.077 | 0.076
100 | 0.957 | 0.035 { 0.007 | 0.001 | 0.725 | 0.127 | 0.088 | 0.060
n GCW GCV,,
1 2 1 2
50 | 0.750 | 0.128 | 0.066 | 0.056 | 0.604 | 0.134 | 0.105 | 0.157
100 | 0.747 | 0.117 | 0.082 | 0.054 | 0.625 | 0.133 | 0.121 | 0.121

TABLE 4.2. Probability of selecting the model when the data is simulated from a
cubic regression spline model with 1 knot: y =1+ 2z + 2% + 2° - 15(z - 1)+
N(0,2%) and X € [0,2]

n BFp_int BFintrinsic
# of knots 0 1 2 3 0 1 2 3
50 0.058 | 0.855 | 0.063 | 0.024 | 0.321 | 0.614 | 0.049 | 0.016
100 0.009 | 0.907 | 0.069 | 0.015 | 0.072 | 0.879 | 0.044 | 0.005
n BIC AIC
# of knots 0 1 2 3 0 1 2 3
50 0.331 | 0.598 | 0.046 | 0.025 | 0.133 | 0.615 | 0.139 | 0.113
100 0.096 | 0.854 | 0.042 | 0.008 | 0.009 | 0.732 | 0.158 | 0.101
n GCVy GCV,
# of knots 0 1 2 3 0 1 2 3
50 0.155 | 0.632 | 0.125 | 0.088 | 0.069 | 0.415 | 0.243 | 0.273
100 0.010 | 0.747 | 0.156 | 0.087 | 0.004 | 0.424 | 0.273 | 0.299

In summary, the BFP-"™ performed as well as BIC when the smallest model
is true, did as well as AIC when the biggest model is true, and did better than
all other model selectors in other cases.
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TABLE 4.3. Probability of selecting the model when the data is simulated from a
cubic regression spline model with 2 knots: y =1+ + z° + 2° — 10(z — 1/3)3
+5(z — 2/3)3 + N(0,0.5%) and X €[0,2]

n BEP-nt BEintrinsic
# of knots 0 1 2 3 0 1 2 3
50 0.307 | 0.150 | 0.498 | 0.045 | 0.717 | 0.162 | 0.110 | 0.011
100 0.186 | 0.102 | 0.664 | 0.048 | 0.572 | 0.208 | 0.210 | 0.010
n BIC AIC
# of knots 0 1 2 3 0 1 2 3
50 0.742 | 0.139 | 0.102 | 0.017 | 0.427 | 0.205 | 0.250 | 0.118
100 0.632 | 0.163 | 0.189 | 0.016 | 0.240 | 0.194 | 0.430 | 0.136
n GCVy GCV,
# of knots 0 1 2 3 0 1 2 3
50 0.479 | 0.203 | 0.233 | 0.085 | 0.403 | 0.074 | 0.174 | 0.349
100 0.253 | 0.206 | 0.419 | 0.122 | 0.236 | 0.058 | 0.259 | 0.447

TABLE 4.4. Probability of selecting the model when the data is simulated from a
cubic regression spline model with 3 knots: y =1+ xz + z° +z° — 15(z — 0.5)3.
+50(z — 1.0)3 — 50(z ~ 1.5)3 + N(0,0.5%) and X € [0,2)

n BFp-int BFintrinsic
# of knots 0 1 2 3 0 1 2 3
50 0.000 | 0.157 | 0.004 | 0.839 | 0.000 | 0.455 | 0.016 | 0.529
100 0.000 | 0.014 | 0.001 | 0.985 | 0.000 | 0.119 | 0.002 | 0.879
n BIC AIC
# of knots 0 1 2 3 0 1 2 3
50 0.000 | 0.400 | 0.010 { 0.590 | 0.000 | 0.147 | 0.012 | 0.841
100 0.000 | 0.108 | 0.002 | 0.890 | 0.000 | 0.010 | 0.001 | 0.989
n GCV, GCV,
# of knots 0 1 2 3 0 1 2 3
50 0.000 | 0.182 | 0.012 | 0.806 | 0.000 | 0.141 | 0.020 | 0.839
100 0.000 | 0.014 | 0.001 | 0.985 | 0.000 | 0.058 | 0.005 | 0.937

5. EXAMPLE: CORRECTION OF DYE Bias IN MICROARRAY DATA

In ¢cDNA Microarray analyses, the experimenter prepares two tissue samples
of interest and applies fluorescent green (Cy3) and red (Cy5) dyes, which get
activated only when mRNA is bound with complimentary DNA. After hybridiz-
ing mRNA of two tissue samples, the print tip (or printing machine) delivers
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hybridized mRNA into each well. If the gene in a well has a complimentary DNA
for mRNA in a sample, the corresponding dye will get activated. The intensity
of fluorescence indicates the abundance of DNA’s that the tissue sample has.
Intensity of both dye responses increase monotonically with the abundance of
DNA. However, these responses are not identical. This is called dye bias. Dudoit
et al. (2002) suggested removing the dye bias by capturing the trend on the
plot of M (= log(R) — log(G)) vs. A (= {log(R) + log(G)}/2), where R is the
red fluorescence intensity from pooled tissue samples of control group individuals
and G is the green fluorescence intensity from a control group individual. If the
responses of two dyes are identical, there should not be any trend on M vs. A
plot. Dudoit et al. (2002) proposes to estimate the trend in the mean function
using nonparametric regression.

The apo Al experiment used eight normal C57B1/6 mice for the control group
(mouse id=1,2,...,8) and another eight mice with the apo Al knocked-out for
the treatment group (mouse id=1,2,...,8). Model selection criteria are applied
to choose a proper model that captures the trend of M wvs. A plot of these data
(Figure 1.1). As candidate models, we considered regular cubic regression spline
models with equally-spaced 1-6 knots, and natural cubic regression spline models
with equally-spaced 2-6 knots, and a cubic regression model. Among 12 candidate
models, BIC, BF™#rinsic and BFP-" support the natural cubic regression spline
model with 4 knots and AIC, GCVy and GCV,, support the cubic regression
spline model with 5 knots. It seems that the natural spline model performed a
little better in the right edge of the data (see where A € (14,15) in Figure 1.1).
However, there is not a big difference among these models in a practical sense.
Model selection criteria were sensitive for this case, because the data has a large
number (3192) of observations.

6. CONCLUDING REMARK

We developed the partial intrinsic Bayes factor to select the best model when
all candidate models have common parameters. Knot selection in cubic regression
splines often belongs to this case because four regression parameters in the cubic
regression part are usually included in all candidate models. Using simulation
study, it is demonstrated that the partial intrinsic Bayes factor performs better
than others. Although main ideas in this method can be widely applied in many
types of regression analyses, computational difficulty can be an disadvantage to
apply it to any model beyond the normal linear regression.
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APPENDIX

Calculation of partial intrinsic Bayes factor

By Judge et al. (1988),

(v = X9)"(y = X¢) + (¥ =) B —¥)

={w -9 (B+XTX)(% - %)
+{w- X9 - X9) + @-D"BEG - )},

N

where ¥ = (B + XTX)"}(BY + XTX¢) and ¢ = (XTX)"1XTy. Though B
does not have full rank, B + X7 X is positive definite because B is non-negative
definite and X7 X is positive definite. Hence, the inverse of (B + X7 X) exists.
Therefore, equation (3.5) can be written

(P, oly)
o o™ P exp [~ {(y - Xv)"(y— X¥) + (¢ = $)" B - ) }/207]
o o~PB P exp {_ W -9)T(B+XTX)W —¢) }

202

202

W {~ (v = X9)"(y = X9) + (&~ %)"BE ~ ) }

x m(Ylo,y) - m(oly),
where -
blo,y ~ N ($,03(B+X7X)7),
aly ~ IG2 (3,3) ,

2

all

and
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(y=XP)T(y— XP) + (@ — $)TBE - 9)
—_7 _ =T 2 =
_yTy+v By -9 (B+XTX)Y
N 2
Ty + 7B — (B + XTXP)(B + XTX) 1 (BP + XTX4))
B 2

<l

In other words,

(4w, oly) = n($lo,y)r(aly)
= (27)~PatPa)/25=(Patra) (B + XTX)|
x exp{ — (¥ — )T (B+XTX)(v — ¥)/20°}

=(n—pp)/2 -
2b a,—n-i-pﬂ—le—l_w_z

Xm0~ ?
L((n - pg)/2)
The marginal distribution becomes
[ e B.0)m(@,0,0) d(a 6,0)

_ fyla, B,0)m(e, B,0)
(e, B,0ly)

= [em ™20 exp { - (y — X)T(y - X1)/20%}
x(2m) e 2P| A exp { — (4 - §)T B - 9)/20 )07

- [(27r)_(pﬁ+pa)/2o.*(pﬁ+Pa)lB + XTXl1/2

xexp { — (% — )T (B+ XTX)(¥ - $)/20%}
=(n—pg)/2
y 2b
T((n—pp)/2)

= [(gﬁ)—n/2 % (27r)—pa/2’A|1/2]

— 1 —35-2
Py 16 bo J

=(n—pg)/2
2b
< @) Petrd2p L XTx12_ 22 |
[ R CErRYE)

— (2m)~ P2 (14]/|B + XTx])"/? W
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Naturally, define the expressions, Bj, 7, Paj, Xs[j] and EE], to show the depen
dence on the model j and the set s. Equation (3.2) becomes

N ff(ysvj7yscjla7/8’a’ M;)m(a, B,0|M;) d(a, B, 0| M)
Iy Wsey M) = =5 5 10 B0, 35y (a, B, oM, d(as, B, o0)

(n—pgs AT 1\ /2 T({n—ps,}/2
(2m)rra2 (1Al B; + XETXTY) T ey
S

(2m)~{C(s¢5)—Pp;}/2 (|A|/|Bj + x LT x 1)

Scj Scj

‘) /2 0({C(se5)—pps}/2)
2z£]];C(SCj)_pﬁj}/2

1/2
= (2m)~(=Cl V2 (1B, 4 XU XD |/1B; + X G XY)) /

Scj Scj

=[IH{C(scj)—pp;}/2
D)) B
T({C(s¢) — pp;}/2) ggl(n—pﬁj)ﬂ

where C(s) is the size of set s. Hence, the BFP-*" is

f(ysul lyscl’ Ml)
f(y3v2|ysc2J My)

= {(27T)—{TL—C7(Sc1)}/2 (|B + x T x [

Dintrinsic __
BF5 =

Scl Scl

1By + X7 X))

=[1{C(sc1)—pg1}/2
o D((n—ps)/2) By, t=pe1
T'({C(sa1) — ps1}/2) ig]("—Pﬁ 1)/2

1/2
+{(27r)*{n—0(scz)}/2 (|B2 + XzzTXs[,z]sz N X[Z] X[2]|)

P((nﬂpﬁ2)/2) b3c2
T{((Cloa) - pp2)/7) om0

=[2{C(sc2)—~ps2}/2 }

1By + X xM /1B, + x T Xm|>
1By + x5 xH) /1B, + x BT x 2

[1 HC(sc1)—ps1}/2 Z[2](n—pg 2)/2
T((n - pp1)/2) T{C(se2) — ppa}/2) B o 0 g 727

D((n = pp2)/2) D({C(sc2) = pya}/2) GeHOCI P23 2 G lTerra 72

= (2m){C(sa)=Clsc2)}/2 (

X
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Empirical Bayes Gibbs Sampling

Notice that the marginal likelihood of A is

LNy, 0,y)

HOY = 2o
where L(A,1¢,0,y) is the complete likelihood that will be used in the EM algo-
rithm. The expectation of the log complete data likelihood can be approximated
as follows. Recall that B is a function of A (B = B())). Let an initial value of
A in the EM algorithm A,. When a variable or parameter depends on ,, we use

the subscript o, for example, B, = B(\,). We have

Q(AXo) = Ey ga,,y llog LA, 4, 0,y)]

= Ey o,y [log L(Aly, o, B, 0)]

= Ey s,y [log f(ylo, B,0) + log m(alA, o) + log (B, 7)]
= Eyop,,v logm(al), o)]

1, |1 1 i )
= Eyoir,y [5 log ;A‘ - 5&-5((1 - &) A(a - a)]
= Ey oo,y {_pa log (A) - m(a —a)(a - 07)]

o2

1 a-a)(a-a
= —palog () — WEw,alxo,Y [( Sl )] )

and
_ 2

(a-a)f(a-a)=a®+a?+- +ap,

because &1 = @z = -+ = @p, = 0. Therefore,

Let (7—12, T2 ... ,Tpa+pg2) be the diagonal elements of (B + X7 X)~!, that is,

T . _
(T12’T22"",Tpa+pﬂ2) :dlag{(Bo+XTX) 1}-
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Then,

2
1 1 2
E’l/)’o”)\o,y [0.2 J = .0.-—2E¢IU)AOVY [al }

= 52 [ % (vI5.2(Bo 4 X)) ay

o2
1
= a1¢(a1|a1,7‘10 )da1
1
= (Va‘raq]a)\ (o) + B2\, [a 1])
=21
= 7‘1 + a1 ﬁ'

Because @; is independent of o,

a12 2
ET/%UP\O,Y ? =Ea|/\o Ew(a)\o

—T1+C¥1 Ea',\o [ 2

where
-2 —2 2% —28-1_—bo—2
Esin,y [o ] = [o ﬁa e do
- 2b o—2Aa+1)-1 —ba—2d0
I'(a)
—a-+1 _
_ /F(a-f— 1) 2b 0__2(5+1)_1e_50—2d0
r@- 5 r'@+1)
_TP@+1)
NORA
Therefore, _
aq? —2(I(@+1
Ez/z,alx\o,Y [7‘17} = 7'12 +a12 # )
a -
and
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Hence,
8 0 1 (a@—a)T(a—a)
Qo) = X { —Pa log (X) — W&p,ap\o,y [ =
o — 21‘ a+ 1)
8*{ “roloe(® VZ(T = @-5)}
= —paA 4+ /\—32 (TE +a2§>
i=1 b
and
3]
7 Q@A) =
Pa ZE
@)\:\J = (T o §>.
Do

Now, we are ready to set up an EM algorithm as
Step 1. Let I =1 and @ = (n — pg)/2. Assign an initial value, A=130),
Step 2. Calculate

BU-1 — ( (Au- 1)) Tpapa Opapﬁ)

Opﬂpa Opgpg

E(H) (B4 + xTx)y"1(BEDY + XT X)),

_(l V= ES— ), where k = 1,2,...,pq,

(4-1)2, A ) = degl(B 4 XTR),

B = - xP Vw-X3 ) +E@-F FEYG-F ).

Step 3. Calculate

o -2 = (@-12 3
P (7']( ) —|—a,( ) 3(121))

=1

50 =
Da

Step 4. Let I =1+ 1 and go to Step 2 until \()) converges.
Once the algorithm converges, we use D as estimates for \.
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