Ciglitazone, in Combination with All trans Retinoic Acid, Synergistically Induces PTEN Expression in HL-60 Cells

백혈병세포에서 PTEN 발현에 대한 Ciglitazone과 retinoic Acid의 항진 작용

  • Lee Seung-Ho (Department of Nursing, College of Visual image & Health, Kongju National University) ;
  • Park Chul-Hong (Department of Biochemistry, Medical School and Institute of Medical Science, Chonbuk National University) ;
  • Kim Byeong-Su (Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University)
  • 이성호 (공주대학교 영상보건대학 간호학과) ;
  • 박철홍 (전북대학교 의과대학 생화학교실 의과학연구소) ;
  • 김병수 (공주대학교 산업과학대학 특수동물학과)
  • Published : 2006.09.01

Abstract

Peroxisome proliferatorr-activated receptor-gamma $(PPAR{\gamma})$ must form a heterodimer with the retinoid-X receptor (RXR) to bind DNA, and its transcriptional activity is thought to be maximized by ligands specific for either receptor. Activated $(PPAR{\gamma})$ and $(PPAR{\gamma})$ ligands may influence tumor growth through regulation of the tumor suppressor PTEN. Our aim in this study was to determine whether co-stimulation with the $(PPAR{\gamma})$ ligand, ciglitazone, and RXR ligand can synergistically upregulate PTEN in human acute promyelocytic leukemia (APL) cells and consequently potentate the inhibition of cell growth and cell cycle progression of these cells. Human leukemia cell line, HL-60 cells were exposed to all-trans-retinol and ciglutazone. The PTEN expression was measured as the level of PTEN mRNA expression by RT-PCR and as the level of PTEN expression by western blot analysis. Cell cycle analysis was carried out by a propidium iodide (PI) staining method and analyzed with a FACScan. The $(PPAR{\gamma})$ ligand, ciglitazone, and the RXR ligand, retinoic acid, upregulated PTEN expression by HL-60 cells in time- and dose-dependent manners, respectively. This was significantly enhanced by a combination of both ciglitazone and retinoic acid. Moreover, these compounds synergistically induced arrests of both cell growth and the $G_l$ phase of the cell cycle. Thus, the activation of the $(PPAR{\gamma})$:RXR heterodimer may represent a regulatory pathway for human leukemia cells and there may be important roles for $(PPAR{\gamma})$ and RXR ligands in prophylactic and therapeutic approaches fur controlling leukemia through the upregulation of PTEN.

Peroxisome proliferator-activated receptor-gamma$(PPAR{\gamma})$ 는 DNA와 결합하기 위해 retinoid-X receptor(RXR)와 heterodimer를 형성해야만 한다. 그리고 전사에 대한 최대활성은 수용체에 대한 리간드 특이성에 의하는 것으로 생각되고 있다. 활성화된 $(PPAR{\gamma})$$(PPAR{\gamma})$ 리간드는 종양억제 PTEN의 조절을 통해 종양세포의 성장에 영향을 끼치게 된다. 본 연구의 목적은 $(PPAR{\gamma})$ ligand, ciglitazone그리고 RXR ligand로 동시에 자극하였을 때 급성전골수성백혈병(APL) 세포에 대해 이들이 함께 PTEN upregulate를 조절할 수 있는지를 결정하기 위함이다. 그리고 이들 세포의 성장과 분화주기에 대해 강력한 억제 능이 있는지를 결정하고자 하였다. 즉, 사람의 백혈병세포주인 HL-60세포에 all-trans-retinol과 ciglutazone을 노출시킨 뒤 PTEN 발현에 대한 측정을 위해 RT-PCR법으로 PTEN mRNA 발현 정도를 확인하고 western blot으로 분석하였다 세포주기의 분석은 propidium iodide(PI) 염색법과 FACScan으로 분석하였고, HL-60 cells에서 $(PPAR{\gamma})$ ligand, ciglitazone, 그리고 RXR ligand, retinoic acid 그리고 upregulated PTEN 발현에 대한 time- and dose-dependent방법으로 각각 확인하였던 바 ciglitazone과 retinoic acid를 동시 조합하여 처치하였을 때 유의적인 효과를 인정할 수 있었다. 더욱이 이들 혼합 물질은 세포의 성장과 G, phase를 동시 억제하는 능력이 있었다. 그러므로 $(PPAR{\gamma})$의 활성에 있어 RXR heterodimer가 사람의 백혈병세포에 대한 조절 경로로서 존재하며, PTEN의 upregulation을 통해 백혈병을 조절하기 때문에 백혈병의 예방 및 치료 접근에 $(PPAR{\gamma})$와 RXR ligands가 중요한 역할을 할 것이다.

Keywords

References

  1. Myers, M.P., Pass, I., and Batty, I.H. The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc. Natl. Acad. Sci. U. S. A. 95, 13513-13518 (1998)
  2. Wen, S., Stolarov, J., and Myers, M.P. PTEN controls tumor-induced angiogenesis. Proc Natl. Acad.Sci. U. S. A. 98, 4622-4627 (2001)
  3. Kim, J.S., Peng, X., De, P.K. PTEN controls immunoreceptor (immunoreceptor tyrosine-based activation motif) signaling and the activation of Rac. Blood 99, 694-697 (2002) https://doi.org/10.1182/blood.V99.2.694
  4. Li, J., Yen, C., and Liaw, D. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943-1947 (1997) https://doi.org/10.1126/science.275.5308.1943
  5. Teng, D.H., Hu, R., Lin, H. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. 57, 5221-5225 (1997)
  6. Obata, K., Morland, S.J., and Watson, R.H. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 58, 2095-2097 (1998)
  7. Sakai, A., Thieblemont, C., and Wellmann, A. PTEN gene alterations in lymphoid neoplasms. Blood 92, 3410-3415 (1998)
  8. Vlietstra, R.J., van Alewijk, D.C., Hermans, K.G., van Steenbrugge, G.J., and Trapman, J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58, 2720-2723 (1998)
  9. Dahia, PL, Aguiar, RC, and Alberta J, et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum. Mol. Genet. 8, 185-193 (1999) https://doi.org/10.1093/hmg/8.2.185
  10. Liu, T.C., Lin, P.M., and Chang, J.G.. Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. Am. J. Hemato. 63, 170-175 (2000) https://doi.org/10.1002/(SICI)1096-8652(200004)63:4<170::AID-AJH2>3.0.CO;2-0
  11. Stambolic, V., Suzuki, A., and de la Pompa, J.L. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29-39 (1998) https://doi.org/10.1016/S0092-8674(00)81780-8
  12. Breitman, T.R., Selonick, S.E., and Collins, S.J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl. Acad. Sci. U. S. A. 77, 2936-2940 (1980)
  13. Olsson, I.L., and Breitman, T.R. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by retinoic acid and cyclic adenosine 3':5'-monophosphate-inducing agents. Cancer Res. 42, 3924-3927 (1982)
  14. Barbui, T., Finazzi, G., and Falanga, A. The impact of alltrans-retinoic acid on the coagulopathy of acute promyelocytic leukemia. Blood 91, 3093-3102 (1998)
  15. Li, Y., Dawson, M.I., and Agadir, A. Regulation of RAR beta expression by RAR- and RXR-selective retinoids in human lung cancer cell lines: effect on growth inhibition and apoptosis induction. Int. J. Cancer. 75, 88-95 (1998) https://doi.org/10.1002/(SICI)1097-0215(19980105)75:1<88::AID-IJC14>3.0.CO;2-9
  16. Rosen, E.D., and Spiegelman, B.M. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276, 37731-37734 (2001) https://doi.org/10.1074/jbc.R100034200
  17. Konopleva, M., and Andreeff, M.. Role of peroxisome proliferator-activated receptor-gamma in hematologic malignancies. Curr. Opin. Hematol. 9, 294-302 (2002) https://doi.org/10.1097/00062752-200207000-00006
  18. Koeffler, H.P. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res. 9, 1-9 (2003)
  19. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman R.A., and Evans, R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358, 771-774 (1992) https://doi.org/10.1038/358771a0
  20. Willson, T.M., Lambert, M.H, and Kliewer, S.A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu. Rev. Biochem. 70, 341-367 (2001) https://doi.org/10.1146/annurev.biochem.70.1.341
  21. Lehmann, J.M., Lenhard, J.M, and Oliver, B.B. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406-3410 (1997) https://doi.org/10.1074/jbc.272.6.3406
  22. Warrell, RP, Jr., Frankel, SR, and Miller, W.H. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324, 1385-1393 (1991) https://doi.org/10.1056/NEJM199105163242002
  23. Warrell, RP, Jr., de The, H, Wang, ZY, and Degos, L. Acute promyelocytic leukemia. N. Engl. J. Med. 329, 177-189 (1993) https://doi.org/10.1056/NEJM199307153290307
  24. Tontonoz, P., Singer S., and Forman, B.M. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc. Natl. Acad. Sci. U. S. A. 94, 237-241 (1997)
  25. Demetri, G.D., Fletcher, C.D., and Mueller, E. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc. Natl. Acad. Sci. U. S. A. 96, 3951-3956 (1999)
  26. Tontonoz, P., Nagy, L., and Alvarez, J.G. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241-252 (1998) https://doi.org/10.1016/S0092-8674(00)81575-5
  27. Asou, H., Verbeek, W., and Williamson, E. Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activated receptor gamma, and retinoids. Int. J. Oncol. 15, 1027-1031 (1999)
  28. Cornic, M., Delva, L, and Guidez, F. Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res. 52, 3329-3334 (1992)
  29. Brown, G, Bunce, CM, Rowlands, DC, et al. All-trans retinoic acid and 1 alpha, 25-dihydroxyvitamin D3 co-operate to promote differentiation of the human promyeloid leukemia cell line HL60 to monocytes. Leukemia 8, 806-815 (1994)
  30. Gallagher, RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 16, 1940-1958 (2002) https://doi.org/10.1038/sj.leu.2402719
  31. Witcher, M., Shiu, H.Y., Guo, Q., Miller, WH, Jr. Combination of retinoic acid and tumor necrosis factor overcomes the maturation block in a variety of retinoic acidresistant acute promyelocytic leukemia cells. Blood 104, 3335-3342 (2004) https://doi.org/10.1182/blood-2004-01-0023
  32. Hisatake, J, O'Kelly, J, Uskokovic, MR, Tomoyasu, S, Koeffler, HP. Novel vitamin D(3) analog, 21-(3-methyl-3-hydroxy-butyl)-19-nor D(3), that modulates cell growth, differentiation, apoptosis, cell cycle, and induction of PTEN in leukemic cells. Blood 97, 2427-2433 (2001) https://doi.org/10.1182/blood.V97.8.2427
  33. Patel, L, Pass, I, Coxon, P. Tumor suppressor and antiinflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr. Biol. 11, 764-768 (2001) https://doi.org/10.1016/S0960-9822(01)00225-1
  34. Mukherjee, R, Davies, PJ, Crombie, DL. Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature 386, 407-410 (1997) https://doi.org/10.1038/386407a0
  35. Nolte, RT, Wisely, GB, Westin, S. Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395, 137-143 (1998) https://doi.org/10.1038/25931
  36. Kwak, Y.G., Song, C.H., Yi, H.K. Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J. Clin. Invest. 111, 1083-1092 (2003) https://doi.org/10.1172/JCI16440
  37. Hwang, P.H., Yi, H.K, Kim, D.S., Nam, S.Y., Kim, J.S., and Lee, DY. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett. 172, 83-91 (2001) https://doi.org/10.1016/S0304-3835(01)00632-2
  38. Wightman, J., Roberson, M.S., Lamkin, T.J. Retinoic acid-induced growth arrest and differentiation: retinoic acid up-regulates CD32 (Fc gammaRII) expression, the ectopic expression of which retards the cell cycle. Mol. Cancer Ther. 1, 493-506, (2002)
  39. Yang, Z., Bagheri-Yarmand, R., and Balasenthil, S. HER2 regulation of peroxisome proliferator-activated receptor gamma (PPARgamma) expression and sensitivity of breast cancer cells to PPARgamma ligand therapy. Clin. Cancer Res. 9, 3198-3203 (2003)
  40. Moore, K.J., Rosen, E.D., and Fitzgerald, M.L. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat. Med. 7, 41-47 (2001) https://doi.org/10.1038/83328
  41. Suh, N., Wang, Y., and Honda, T. A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59, 336-341 (1999)
  42. Konopleva, M., Tsao, T., and Ruvolo, P. Novel triter penoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 99, 326-335 (2002) https://doi.org/10.1182/blood.V99.1.326
  43. Denzlinger, C. D.K, and Mohle, A. Peroxisom proliperator activated receptor g (PPAR${\gamma}$) agonist as antileukemic agents in CMML. Blood 98, 625a (2001)
  44. Cantley, L.C., and Neel, B.G.. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad .Sci. U. S. A. 96, 4240-4245 (1999)
  45. Di Cristofano, A., and Pandolfi, P.P. The multiple roles of PTEN in tumor suppression. Cell 100, 387-390 (2000) https://doi.org/10.1016/S0092-8674(00)80674-1
  46. Cappellini, A., Tabellini, G., and Zweyer, M. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 17, 2157-2167 (2003) https://doi.org/10.1038/sj.leu.2403111
  47. Seminario, M.C., Precht, P. Wersto, R.P., Gorospe, M., and Wange, R.L. PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression. Oncogene 22, 8195-8204 (2003)
  48. Lee, YR, Shim, HJ, and Yu, H.N. Dimethylsulfoxide induces upregulation of tumor suppressor protein PTEN through nuclear factor-kappa B activation in HL-60 cells. Leuk. Res. 29, 401-405 (2005) https://doi.org/10.1016/j.leukres.2004.09.010
  49. Santos, N.C., Martins-Silva, J., and Saldanha, C. PTEN 'meets' DMSO. Leuk. Res. 29, 361-362 (2005) https://doi.org/10.1016/j.leukres.2004.09.009