Electrical Resistivity Methods in Korea

한국의 전기비저항탐사

  • Kim, Hee-Joon (Department of Environmental Exploration Engineering, Pukyong National University)
  • 김희준 (부경대학교 환경탐사공학과)
  • Published : 2006.08.01

Abstract

Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

비록 2차 세계대전 이전에 자연전위가 관측되었다는 기록도 있기는 하지만, 한국에서 대전 이후 서서히 발전하던 전기탐사가 본격적으로 보급된 것은 1980년대 이후의 일이다. 다른 선진국과 달리 한국의 경우 전기비저항법을 환경문제보다 토목 건설 문제에 상대적으로 더 많이 적용하고 있다. 다른 모든 기술분야와 마찬가지로 반도체산업의 발전은 자료 수집과 잡음 감쇄처리에서 혁신을 가져왔으며, 지난 25년 동안 전기비저항 자료의 수집, 처리 및 해석에 있어서 두드러진 발전이 있었다. 평활화제약 모델에 의한 2차원 전기비저항 역산의 개발은 지난 40년 동안 물리탐사 자료해석에서 가장 현저한 변화 중 하나이며, 지금은 겉보기비저항 자료에 일반적으로 적용되고 있다. 전기비저항 분포를 가단면도가 아니라 단면도로 나타낼 수 있게 된 것은 자료해석에 혁신을 가져왔다. 일반적인 전자기 문제에서는 감도 계산을 위해 대단히 많은 전진 모델링을 필요로 하지만, 전기비저항법에서는 전류원과 수신점이 같은 위치를 차지하기 때문에 계산효율이 높아서 이전에는 처리하기 어려웠던 3차원 역산도 이제는 가능해졌다.

Keywords

References

  1. 김정호, 현병구, 정승환 (1989a) Reciprocity 원리를 이용 한 2차원 비저항 탐사자료의 효율적 역산. 대한광산학회지, 26권 p. 18-27
  2. 김정호, 현병구, 정승환 (1989b) 쌍극자 배열 비저항탐사 자료의 2차원 지동역산. 대한광산학회지, 26권 p. 90-100
  3. 서정희, 양정아, 최지향, 한누리, 남정미, 임보성, 조호범 (2006) 물리탐사 논문 동향 분석 및 데이터베이스 작성 한국지질자원연구원 위탁과제 보고서 (과제번호 400-20060010), 서울대학교 공학연구소
  4. 이명종, 현병구, 김정호 (1995) 시추공간 전기비저항 탐사 자료의 영상화. 한국자원공학회지, 32권 p. 87-96
  5. 이명종, 김정호, 조성준, 정승환, 송윤호 (1999) 전기비저항 자료의 3차원 역산. 물리탐사, 2권 p. 191-201
  6. 이명종, 김정호, 정승환, 서정희 (2002) 전기비저항 토모그 래피에 의한 지하구조의 3차원 영상화. 물리탐사, 5권 p.236-249
  7. 조인기, 정승환, 김정호, 송윤호 (1997a) 전기비저항 토모 그래피에서의 전극배열비교. 한국자원공학회지, 34권, p. 18-26
  8. 조인기, 김정호, 정승환 (1997b) 전기비저항 토모그래피에 서의 공내수 영향. 한국자원공학회지, 34권, p. 531538
  9. 편집실 (1998a) 전기비저항 탐사(I) 물리탐사, 1권 p. 140-143
  10. 편집실 (1998b) 전기비저항 탐사 (II) , 물리탐사, 1권, p. 188-195
  11. Coggon, J.H. (1971) Electromagnetic and electrical modeling by the finite element method. Geophysics, v. 36, p. 132-155 https://doi.org/10.1190/1.1440151
  12. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, v. 52, p. 289-300 https://doi.org/10.1190/1.1442303
  13. Corwin, R.E (1990) The self-potential method for environmental and engineering applications. In Ward, S.H. (ed.) Geotechnical and Environmental Geophysics, Vol. 1, Soc. Expl., Geophys., p. 127-145
  14. Daily, W. and Owen, E. (1991) Cross-borehole resistivity tomography. Geophysics, v. 56, p. 1228-1235 https://doi.org/10.1190/1.1443142
  15. deGroot-Hedlin, C. and Constable, S. (1990) Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, v. 55, p. 1613-1624
  16. Dey, A. and Morrison, H.F. (1979a) Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophys. Prosp., v. 27, p. 106-136 https://doi.org/10.1111/j.1365-2478.1979.tb00961.x
  17. Dey, A. and Morrison, H.F. (1979b) Resistivity modeling for arbitrarily shaped three-dimensional bodies. Geophysics, v. 44, p. 753-780 https://doi.org/10.1190/1.1440975
  18. ElIis, R.G. and Oldenburg, D.W. (1994) The pole-pole 3D resistivity inverse problem: a conjugate-gradient approach. Geophys. J Int., v. 119, p. 187-194 https://doi.org/10.1111/j.1365-246X.1994.tb00921.x
  19. Gasperikova, E. and Morrison, H. F. (2001) Mapping of induced polarization using natural fields. Geophysics, v. 66, p. 137-147 https://doi.org/10.1190/1.1444888
  20. Ghosh, D.P. (1971) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys. Prosp., v. 19, p.192-217 https://doi.org/10.1111/j.1365-2478.1971.tb00593.x
  21. Gunther, T, Rucker, C. and Spitzer, K. (2006) Threedimensional modeling and inversion of dc resistivity data incorporating topography ae II . Inversion. Geophys. J Int., v. 166, p. 506-517 https://doi.org/10.1111/j.1365-246X.2006.03011.x
  22. Haber, E. and Oldenburg, D.W. (2000) A GCV based method for nonlinear ill-posed problems. Comput. Geosci., v. 4, p. 41-63 https://doi.org/10.1023/A:1011599530422
  23. Hohmann, G.W. (1975) Three-dimensional induced polarization and electromagnetic modeling. Geophysics, v. 40, p. 309-324
  24. Inman, J.R, Ryu, J. and Ward, S.H. (1973) Resistivity inversion. Geophysics, v. 38, p. 1088-1108 https://doi.org/10.1190/1.1440398
  25. Kim, H.J. and Kim, Y. (1988) Two-dimesional inversion for dipole-dipole resistivity data. J. Korean Inst. Mining Geol., v. 21, p. 107-113
  26. Kim, J-H., Yi, M.-J., Cho, S.-J. (2004) Application of highresolution geoelectric imaging techniques to geotechnical engineering in Korea, Proc. ISRM Internat. Symp. 3rd ARMS, Kyoto, Japan, p. 191-196
  27. Lee, T (1975) An integral equation and its solution for some two and three-dimensional problems in resistivity and induced polarization. Geophys. J. R. astr. Soc., v. 42, p. 81-95
  28. Lines, L.R and Treitel, S. (1984) Tutorial: A review of least-squares inversion and its application to geophysical problems. Geophys. Prosp., v. 32, p. 159-186 https://doi.org/10.1111/j.1365-2478.1984.tb00726.x
  29. Loke, M.H. and Barker, R.D. (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prosp., v. 44, p. 131152
  30. Lowry, T, Alien, M.B. and Shive, P.N. (1989) Singularity removal: A refinement of resistivity modeling techniques. Geophysics, v. 54, p. 766-774 https://doi.org/10.1190/1.1442704
  31. Nabighian, M.N. and Macnae, J.C. (2005) Electrical and EM methods, 1980-2005. Leading Edge, v. 24(Sl), p. S42-S45 https://doi.org/10.1190/1.2112391
  32. Oristaglio, M. and Spies, B. (eds.) (1999) Three-Dimensional Electromagnetics. Soc. Expl. Geophys., 709p
  33. Pain, C.C., Herwanger, J.V., Worthington, M.H. and de Oliveira, C.R.E. (2002) Effective multidimensional resistivity inversion using finite-element techniques. Geophys. J. Int., v. 151, p. 710-728 https://doi.org/10.1046/j.1365-246X.2002.01786.x
  34. Park, S.K and Van, G.P. (1991) Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics, v. 56, p. 951-960 https://doi.org/10.1190/1.1443128
  35. Parker, R.L. (1980) The inverse problem of electromagnetic induction: existence and construction of solutions based upon incomplete data. J. Geophys. Res., v. 85, p. 4421-4425 https://doi.org/10.1029/JB085iB08p04421
  36. Parker, R.L. (1994) Geophysical Inverse Theory. Princeton Univ. Press
  37. Pelton, W.H., Rijo, L. and Swift, C.M., Jr. (1978) Inversion of two-dimensional resistivity and induced-polarization data. Geophysics, v. 43, p. 788-803 https://doi.org/10.1190/1.1440854
  38. Peltoniemi, M. (2005) Impact factor, citations, and Geophysics. Geophysics, v. 70, p. 3MA-17MA https://doi.org/10.1190/1.1897303
  39. Petrick, W.R., Jr., Sill, W.R. and Ward, S.H. (1981) Threedimensional resistivity inversion using alpha centers. Geophysics, v. 46, p. 1148-1163 https://doi.org/10.1190/1.1441255
  40. Pridmore, D., Hohmann, G.W., Ward, S.H. and Sill, W.R (1981) An investigation of finite element modeling for electrical and electromagnetic data in three dimensions. Geophysics, v. 46, p. 1009-1024 https://doi.org/10.1190/1.1441239
  41. Rodi, W.L. (1976) A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys. J. Roy. astr. Soc., v. 44, p. 483-506 https://doi.org/10.1111/j.1365-246X.1976.tb03669.x
  42. Rucker, C., Gunther, T. and Spitzer, K. (2006) Threedimensional modeling and inversion of dc resistivity data incorporating topography ae I. Modeling. Geophys.J. Int., v. 166, p. 495-505 https://doi.org/10.1111/j.1365-246X.2006.03010.x
  43. Sasaki, Y. (1981) Automatic interpretation of resistivity sounding data over two-dimensional structure (I). Butsuri-Tanko, v. 34, p. 341-350. (in Japanese)
  44. Sasaki, Y. (1989) Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, v. 54, p. 254-262 https://doi.org/10.1190/1.1442649
  45. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys. Prosp., v. 40, p. 453-463 https://doi.org/10.1111/j.1365-2478.1992.tb00536.x
  46. Sasaki, Y. (1994) 3-D resistivity inversion using the finite element method. Geophysics, v. 59, p. 1839-1848 https://doi.org/10.1190/1.1443571
  47. Sasaki, Y. (1999) 3-D inversion of electrical and electromagnetic data on PCs: Proc. 3-D EM, p. 128-131
  48. SEG of Japan (1998) Electrical methods. In: Handbook of Geophysical Exploration, Vol. Techniques, p. 239-295. (in Japanese)
  49. Shirna, H. (1992) 2-D and 3-D resistivity imaging reconstruction using crosshole data. Geophysics, v. 57, p. 682-694
  50. Smith, N.C. and Vozoff, K. (1984) Two-dimensional DC resistivity inversion for dipole-dipole data. IEEE Trans. Geosci. Remote Sensing, v. 22, p. 21-28 https://doi.org/10.1109/TGRS.1984.350575
  51. Snyder, D.D. (1976) A method for modeling the resistivity and JP response of two-dimensional bodies. Geophysics, v. 41, p. 997-1015 https://doi.org/10.1190/1.1440677
  52. Steeples, D.W. (2001) Engineering and environmental geophysics at the millennium. Geophysics, v. 66, p. 31-35 https://doi.org/10.1190/1.1444910
  53. Steeples, D.W. (2005) Near-surface geophysics: 75 years of progress. Leading Edge, v. 24(S1), p. S82-S85 https://doi.org/10.1190/1.2112395
  54. Tikhonov, A.N. and Arsenin, V.Y. (1977) Solutions to Ill-Posed Problems. John Wiley and Sons, Inc
  55. Torres-Verdin, C., Druskin, Y.D., Fang, S., Knizhnerman, LA and Malinvemo, A. (2000) A dual-grid nonlinear inversion technique with applications to the interpretation of dc resistivity data. Geophysics, v. 65, p. 1733-1745 https://doi.org/10.1190/1.1444858
  56. Tripp, A.C. (2005) Acheron's rainbow: Free associations on 75 years of exploration geo-electromagnetics. Geophysics, v. 70, p. 25ND-31ND https://doi.org/10.1190/1.2127107
  57. Tripp, A.C., Hohmann, G.W. and Swift, C.M. (1984) Twodimensional resistivity inversion. Geophysics, v. 49, p. 1708-1717 https://doi.org/10.1190/1.1441578
  58. Uchida, T. (1993) Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC. J. Geomag. Geoelectr., v. 45, p. 841-858 https://doi.org/10.5636/jgg.45.841
  59. Ward, S.H. (1980) Electrical, electromagnetic, and magnetotelluric methods. Geophysics, v. 45, p. 1659-1666 https://doi.org/10.1190/1.1441056
  60. Ward, S.H. (ed.) (1990a) Geotechnical and Environmental Geophysics. Vol. 2: Geotechnical, and Vol. 3: Environmental and Groundwater. Soc. Expl., Geophys
  61. Ward, S.H. (1990b) Resistivity and induced polarization methods. In Ward, S.H. (ed.) Geotechnical and Environmental Geophysics, Vol. 1. Soc. Expl., Geophys., p. 147-189
  62. Wu, X. (2003) A 3-D finite-element algorithm for DC resistivity modeling using the shifted incomplete Cholesky conjugate gradient method. Geophys.J. Int., v. 154, p. 974-956
  63. Wu, X., Xiao, Y., Qi, C. and Wang, T. (2003) Computations of secondary potential for 3D DC resistivity modeling using an incomplete Cholesky conjugate-gradient method. Geophys. Prosp., v. 51, p. 567-577 https://doi.org/10.1046/j.1365-2478.2003.00392.x
  64. Yi, M.-J., Kim, J.-H., Song, Y., Cho, S.-J., Chung, S. and Suh, J.-H. (2001) Three-dimensional imaging of subsurface structures using resistivity data. Geophys. Prosp., v. 49, p. 483-497 https://doi.org/10.1046/j.1365-2478.2001.00269.x
  65. Zhao, S. and Yedlin, M.J. (1996) Some refinements on the finite-difference method for 3-d dc resistivity modeling. Geophysics, v. 61, p. 1301-1307 https://doi.org/10.1190/1.1444053
  66. Zhou, B. and Greenhalgh, S.A (2001) Finite element three-dimensional direct current modeling: accuracy and efficiency considerations. Geophys.J. Int., v. 145, p. 679-688 https://doi.org/10.1046/j.0956-540x.2001.01412.x