Identification of Auto Programs by Using Decision Tree Learning for MMORPG

MMORPG에서 결정트리 학습을 적용한 자동 프로그램 확인 기법

  • 홍성우 (동국대학교 대학원 컴퓨터공학과) ;
  • 김준태 (동국대학교 컴퓨터공학과) ;
  • 김형일 (동국대학교 컴퓨터공학과)
  • Published : 2006.07.01

Abstract

Auto-playing programs are often used in behalf of human players in MMORPG(Massively Multi-player Online Role Playing Game). By playing automatically and continuously, it helps to speed up the game character's level-up process. However, the auto-playing programs, either software or hardware, do harm to games servers in various ways including abuse of resources. In this paper, we propose a way of detecting the auto programs by analyzing the window event sequences produced by the game players. In our proposed method, the event sequences are transformed into a set of attributes, and the Decision Tree learning is applied to classify the data represented by the set of attribute values into human or auto player. The results from experiments with several MMORPG show that the Decision Tree learning with proposed method can identify the auto-playing programs with high accuracy.

자동 게임 프로그램(auto-playing game programs)은 게임 플레이어를 대신하여 게임 캐릭터를 조종하는 프로그램으로 MMORPG(massively multi-player online role playing game)에서 빈번히 사용되고 있다. MMORPG에서 게임 캐릭터의 레벨을 올리기 위해서는 경험치가 필요하며, 경험치 증가 과정에서 아이템을 구매할 때 사용되는 게임 머니와 특정한 기술을 사용할 수 있는 아이템을 획득한다. 이러한 레벨-업 과정에서 게임 플레이어들은 지루함을 느끼게 되고, 빠른 게임 캐릭터의 성장을 위해 자동 프로그램을 사용하여 게임 캐릭터의 레벨을 증가시키는 경우가 빈번히 발생한다 그러나 자동 프로그램은 게임상에서 비정상적으로 자원을 독점하여 게임 시스템을 황폐화시킬 뿐만 아니라, 불법적인 수익사업으로 악용되어 건전한 게임산업 육성을 방해한다. 본 논문에서는 이러한 자동 게임 프로그램을 찾아내기 위하여 게임 캐릭터에 의해 발생되는 마우스와 키보드를 포함한 윈도우 이벤트 시퀀스를 분석하고, 이벤트 시퀀스로부터 속성 벡터를 생성하여 결정트리 학습을 수행하였다. 결정트리 학습은 윈도우 이벤트 시퀀스에 의해 생성된 속성 벡터들을 이용하여 자동 프로그램을 분류한다. 본 논문에서는 윈도우 이벤트 시퀀스를 활용하여 생성한 26개의 속성들을 결정트리 학습에 적용함으로써 MMORPG에서 자동 프로그램을 효과적으로 분류할 수 있다는 것을 MMORPG에 속하는 몇 가지 게임에 대한 실험을 통해 확인하였다.

Keywords