Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku (Korea Aerospace Research Institute) ;
  • Kang, Sung-Mo (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Yong-Mo (Department of Mechanical Engineering, Hanyang University)
  • Published : 2006.09.01

Abstract

The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.

Keywords

References

  1. Barths, H., Hasse, C., Bikas, G. and Peters, N., 2000, 'Simulation of Combustion in Direct Injection Diesel Engines Using an Eulerian particle Flamelet Model,' Proc. 28th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1161 - 1168
  2. Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M. and Smiljanovski, Y., 1998, 'Simulation of Pollutant Formation in a Gas-Turbine Combustor using Unsteady Flamelets,' Proc. 27th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1841-1847
  3. Chen, M., Herrmann, M. and Peters, N., 2000, 'Flamelet Modeling of Lifted Turbulent Me- thane/Air and Propane/Air Jet Diffusion Flames,' Proc. 28th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 167-174
  4. Coelho, P. J. and Peters, N., 2001, 'Numerical Simulation of a MILD Combustion Burner,' Combustion and Flame, Vol. 124, pp. 503-518 https://doi.org/10.1016/S0010-2180(00)00206-6
  5. Dally, B. B., Masri, A. R., Barlow, R. S., Fiechtner, G. J. and Fletcher, D. F., 1996, 'Measurements of NO in Turbulent Non-premixed Flames Stabilized on a Bluff Body,' Proc. 26th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 2191-2197
  6. Dally, B. B., Masri, A. R., Barlow, R. S. and Fiechtner, G. J., 1998, 'Instantaneous and Mean Compositional Structure of Bluff- Body Stabilized Nonpremixed Flames,' Combustion and Flame, Vol. 114, pp. 119-148 https://doi.org/10.1016/S0010-2180(97)00280-0
  7. Ferreira, J. C., 1996, Flamelet Modelling of Stabilization in Turbulent Non-premixed Combustion, PhD Thesis, ETHZ Zuerich Switzerland
  8. Grear, J.F., 1992, The Twopnt Program for Boundary Value Problems, Sandia Report, SAND918320, Livermore
  9. Hewson, J. C., 1997, Pollutant Emissions from Nonpremixed Hydrocarbon Flames, PhD Thesis, University of California, San Diego
  10. Kang, S. M. and Kim, Y. M., 2003, 'Parallel Unstructured-Grid Finite-Volume Method for Turbulent Nonpremixed Flames Using the Flamelet Model,' Numerical Heat Transfer, Part B, Vol. 43, pp. 525-547 https://doi.org/10.1080/713836318
  11. Kim, H. J. and Kim, Y. M., 2002, 'Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames,' KSME Int. J., Vol. 16, No. 1, pp. 116-124
  12. Kim, H. J., Kim, Y. M. and Ahn, K. Y., 2004a, 'Numerical Modeling of Turbulent Nonpremixed Lifted Flames,' KSME Int. J., Vol. 18, No. 1, pp. 167-172
  13. Kim, S. H., Huh, K. Y. and Tao, L., 2000, 'Application of the Elliptic Conditional Moment Closure Model to a Two-Dimensional Nonpremixed Methanol Bluff-Body Flame,' Combustion and Flame, Vol. 120, pp. 75-90 https://doi.org/10.1016/S0010-2180(99)00092-9
  14. Kim, S. K., Kang, S. M. and Kim, Y. M., 2001, 'Flamelet Modeling for Combustion Processes and NOx Formation in the Turbulent Nonpremexed $CO/H_2/N_2$ Jet Flames,' Combustion Science and Technology, Vol. 168, pp.47-83 https://doi.org/10.1080/00102200108907831
  15. Kim, S. K., Yu, Y., Ahn, J. and Kim, Y. M., 2004b, 'Numerical Investigation of the Autoignition of Turbulent Gaseous Jets in a High- Pressure Environment Using the Multiple-RIf Model,' Fuel, Vol. 83, pp. 375-386 https://doi.org/10.1016/j.fuel.2003.01.001
  16. Klimenko, A. Y. and Bilger, R. W., 1999, 'Conditional Moment Closure for Turbulent Combustion,' Prog. Energy Combust. Sci., Vol. 25, pp. 595-687 https://doi.org/10.1016/S0360-1285(99)00006-4
  17. Kronenburg, A., Bilger, R. W. and Kent, J. H., 2000, 'Computation of Conditional Average Scalar Dissipation in Turbulent Jet Diffusion Flames,' Flow, Turbulence and Combustion, Vol. 64, pp. 145-159 https://doi.org/10.1023/A:1009912404132
  18. Libby, P. A. and Williams, F. A., eds, 1994, Turbulent Reacting Flows, New York, Academic Press
  19. Marracino, B. and Lentini, D., 1997, 'Radiation Modelling in Non-Luminous Nonpremixed Turbulent Flames,' Combustion Science and Technology, Vol. 128, p. 23 https://doi.org/10.1080/00102209708935703
  20. Peters, N., 1986, 'Laminar Flamelet Concepts in Turbulent Combustion,' Proc. 21st Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp.1231-1250
  21. Peters, N., 2000, Turbulent Combustion, Cambridge University Press
  22. Pitsch, H. and Steiner, H., 2000, 'Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D),' Physics of Fluids, Vol. 12, pp. 2541-2554 https://doi.org/10.1063/1.1288493
  23. Pitsch, H., 2000, 'Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames,' Combustion and Flame, Vol. 123, pp. 358-374 https://doi.org/10.1016/S0010-2180(00)00135-8
  24. Pitsch, H., Barths, H. and Peters, N., 1996, 'Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,' SAE paper 962057
  25. Pitsch, H., Chen, M. and Peters, N., 1998, 'Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames,' Proc. 27th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1057-1064
  26. Pitsch, H., Riesmeier, E. and Peters, N., 2000, 'Unsteady Flamelet Modeling of Soot Formation in Turbulent Jet Diffusion Flames,' Combustion Science and Technology, Vol. 158, pp. 389-406 https://doi.org/10.1080/00102200008947342
  27. Pope, S. B., 2000, Turbulent Flows, Cambridge University Press
  28. Radhakrishnan, K. and Hindmarsh, A. C., 1993, 'Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations,' Lawrence Livermore National Laboratory Report, UCRL-ID-113855
  29. Roquemore, W. M., Tankin, R. S., Chiu, H. H. and Lottes, S. A., 1984, 'The Role of Vortex Shedding in a Bluff-Body Combustor,' Experimental Measurement and Techniques in Turbulent Reactive and Nonreactive Flows, Vol. 66, pp. 159-174
  30. Turpin, G. and Troyes, J., 2000, 'Validation of a Two-Equation Turbulence Model for Axisymmetric Reacting and Nonreacting Flows,' AIAA paper 2000-3463
  31. Vervisch, L. and Veynante, D., 2002, 'Turbulent Combustion Modeling,' Prog. Energy Combust. Sci., Vol. 28, pp. 193-266 https://doi.org/10.1016/S0360-1285(01)00017-X