Core-Shell Poly(Styrene/Sulfonated N-hydroxy Ethyl Aniline) Latex Particles Prepared by Chemical Oxidative Polymerization in Emulsion Polymerization

  • Shin Jin-Sup (Department of Chemical Engineering, Yonsei University) ;
  • Lee Jung-Min (Department of Chemical Engineering, Yonsei University) ;
  • Suzuki Kiyoshi (Department of Materials Science and Engineering, Faculty of Engineering, Fukui University) ;
  • Nomura Mamoru (Department of Materials Science and Engineering, Faculty of Engineering, Fukui University) ;
  • Cheong In-Woo (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Kim Jung-Hyun (Department of Chemical Engineering, Yonsei University)
  • Published : 2006.08.01

Abstract

The kinetic behavior of emulsion polymerizations of styrene in the presence of sulfonated N-hydroxy ethyl aniline (SHEA) was investigated with two initiators: 2,2'-azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). SHEA was synthesized using a stepwise polyurethane reaction method from 3-hydroxy-1-propane sulfonic acid sodium salt, isophorone diisocyanate (IPDI), and N-(2-hydroxyethyl) aniline. Stable core-shell poly(styrene/sulfonated N-hydroxy ethyl aniline, St/SHEA) latex particles were successfully prepared by using an appropriate amount of AIBN, in which SHEA plays the role of 'surfmer', i.e., acting as both a surfactant in the emulsion polymerization and a monomer in the chemical oxidative polymerization. The kinetic behavior was dissimilar to that of typical emulsion polymerization systems. A long inhibition period and low rate of polymerization were observed due to radical loss by the oxidative polymerization of SHEA. It was concluded, due to the low water-solubility of AIBN and retardation reaction by SHEA, that the initial loci of polymerization were monomer droplets. However, growing polymer particles as polymerization loci became predominant as polymerization proceeded. It was suggested that AIBN was more effective than KPS in the preparation of the core-shell type poly(St/SHEA) latex particles. With KPS, no substantial polymerization was observed in any of the samples.

Keywords

References

  1. A. Andreatta, Y. Cao, J. C. Chiang, A. J. Heeger, and P. Smith, Synth. Met., 26, 383 (1988) https://doi.org/10.1016/0379-6779(88)90233-0
  2. M. Angelopoulos, G. E. Asturias, S. P. Ermer, A. Ray, E. M. Scherr, A. G. Macdiarmid, M. Akhtar, Z. Kiss, and A. J. Epstein, Mol. Cryst. Liq. Cryst., 160, 151 (1988) https://doi.org/10.1080/15421408808083010
  3. H. de Chanterac, P. Roduit, N. Belhadj-Tahar, A. Fourrier- Lamer, Y. Djigo, S. Aeiyach, and P. C. Lacaze, Synth. Met., 52, 183 (1992) https://doi.org/10.1016/0379-6779(92)90306-4
  4. K. G. Neoh, E. T. Kang, and K. L. Tan, J. Macromol. Sci., Pure Appl. Chem., 401, A29 (1992)
  5. Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 48, 91 (1992) https://doi.org/10.1016/0379-6779(92)90053-L
  6. A. Lian, S. Besner, and L. H. Dao, Synth. Met., 74, 21 (1995) https://doi.org/10.1016/0379-6779(95)80032-8
  7. J. Y. Bergeron and L. H. Dao, Macromolecules, 25, 3332 (1992) https://doi.org/10.1021/ma00039a002
  8. S. Ye, N. T. Do, L. H. Dao, and A. K. Vijh, Synth. Met., 88, 65 (1997) https://doi.org/10.1016/S0379-6779(97)80883-1
  9. L. H. Dao, M. Leclerc, J. Guay, and J. W. Chevalier, Synth. Met., 29, E377 (1989) https://doi.org/10.1016/0379-6779(89)90271-3
  10. G. D'Aprano, M. Leclerc, and G. Zotti, J. Electroanal. Chem., 351, 145 (1993) https://doi.org/10.1016/0022-0728(93)80230-F
  11. L. H. Dao, J. Y. Bergeron, J. W. Chevalier, M. T. Nguyen, and R. Paynter, Synth. Met., 41, 655 (1991) https://doi.org/10.1016/0379-6779(91)91151-Y
  12. A. Lian, S. Besner, N. E. Cherid, J. Y. Bergeron, and L. H. Dao, Polym. Mat. Sci. Eng., 70, 445 (1993)
  13. S. Ye, S. Besner, L. H. Dao, and A. K. Vijh, J. Electroanal. Chem., 381, 71 (1995) https://doi.org/10.1016/0022-0728(95)03686-B
  14. K. Shah and J. Iroh, Synth. Met., 132, 35 (2002) https://doi.org/10.1016/S0379-6779(02)00213-8
  15. R. Sivakumar and R. Saraswathi, Synth. Met., 138, 381 (2003) https://doi.org/10.1016/S0379-6779(03)00023-7
  16. S. P. Armes and B. Vincent, J. Chem. Soc., Chem. Commun., 288 (1987)
  17. S. P. Armes, J. F. Miller, and B. Vincent, J. Colloid Interf. Sci., 118, 410 (1987) https://doi.org/10.1016/0021-9797(87)90476-0
  18. S. P. Armes and M. Aldissi, J. Chem. Soc., Chem. Commun., 88 (1989)
  19. S. P. Armes, M. Aldissi, S. Agnew, and S. Gottesfeld, Mol. Cryst. Liq. Cryst., 190, 63 (1990) https://doi.org/10.1080/00268949008047833
  20. S. Maeda, D. B. Cairns, and S. P. Armes, Eur. Polym. J., 33, 245 (1997) https://doi.org/10.1016/S0014-3057(96)00164-4
  21. S. P. Armes, M. Aldissi, S. Agnew, and S. Gottesfeld, Langmuir, 6, 1745 (1990) https://doi.org/10.1021/la00102a007
  22. S. P. Armes, in Intrinsically Conducting Polymers: An Emerging Technology, M. Aldissi, Ed., Kluwer Academic Publishers, 1993, pp 35
  23. S. F. Lascelles and S. P. Armes, Adv. Mater., 7, 864 (1995) https://doi.org/10.1002/adma.19950071011
  24. S. F. Lascelles, S. P. Armes, P. A. Zhdan, S. J. Greaves, A. M. Brown, J. F. Watts, S. R. Leadley, and S. Y. Luk, J. Mater. Chem., 7, 1349 (1997) https://doi.org/10.1039/a700236j
  25. L. G. B. Bremer, M. W. C. G. Verbong, M. A. M. Webers, and M. A. M. M. van Doorn, Synth. Met., 84, 355 (1997) https://doi.org/10.1016/S0379-6779(97)80779-5
  26. S. F. Lascelles and S. P. Armes, J. Mater. Chem., 7, 1339 (1997) https://doi.org/10.1039/a700237h
  27. A. Yassar, J. Roncali, and F. Garnier, Polym. Commun., 28, 103 (1987) https://doi.org/10.1016/0032-3861(87)90323-5
  28. P. Beadle, S. P. Armes, S. Gottesfeld, C. Mombourquette, R. Houlton, W. D. Andrews, and S. F. Agnew, Macromolecules, 25, 2526 (1992) https://doi.org/10.1021/ma00035a035
  29. H. Q. Xie, H. Liu, Z. H. Liu, and J. S. Guo, Angew. Makromol. Chem., 243, 117 (1996) https://doi.org/10.1002/apmc.1996.052430110
  30. A. E. Wiersma, L. M. A. vd Steeg, and T. J. M. Jongeling, Synth. Met., 71, 2269 (1995) https://doi.org/10.1016/0379-6779(94)03254-4
  31. C. Barthet, S. P. Armes, S. F. Lascelles, S. Y. Luk, and H. M. E. Stanley, Langmuir, 14, 2032 (1998) https://doi.org/10.1021/la971064z
  32. C. Barthet, S. P. Armes, M. M. Chehimi, C. Bilem, and M. Omastova, Langmuir, 14, 5032 (1998) https://doi.org/10.1021/la980102r
  33. M. Okubo, S. Fujii, and H. Minami, Colloid Polym. Sci., 279, 139 (2001) https://doi.org/10.1007/s003960000439
  34. L. Y. Wang, Y. J. Lin, and W. Y. Chiu, Synth. Met., 119, 155 (2001) https://doi.org/10.1016/S0379-6779(00)01101-2
  35. C. Prasanna, in Conducting Polymers, Fundamentals and Applications A Practical Approach, Kluwer Academic Publishers, Massachusetts, 1999
  36. D. C. Trivedi, in Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., John Wiley & Sons, Chichester, 1997, Vol. 2, pp 505-572
  37. I. W. Cheong, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 201, 2221 (2000) https://doi.org/10.1002/1521-3935(20001101)201:17<2221::AID-MACP2221>3.0.CO;2-1
  38. J. S. Shin, J. H Kim, and I. W. Cheong, Synth. Met., 151, 246 (2005) https://doi.org/10.1016/j.synthmet.2005.05.006
  39. R. Y. Hu, A. T. Wang, and J. P. Hartnett, Exp. Therm. Fluid Sci., 4, 723 (1991) https://doi.org/10.1016/0894-1777(91)90079-7
  40. R. G. Gilbert, in Emulsion Polymerization: A Mechanistic Approach, Academic Press, 1995, Chapter 6, pp 60
  41. J. Brandrup, E. H. Immergut, E. A. Grulke, in Polymer Handbook, A Wiley-Interscience Publication, 1999, Chapter II, p.82, 88
  42. D. C. Trivedi and S. K. Dhawan, Synth. Met., 58, 309 (1993) https://doi.org/10.1016/0379-6779(93)91140-W