DOI QR코드

DOI QR Code

Inherent Damage Zone Model for fatigue Strength Evaluation of Cracks and Notches

영역피해모델에 의한 균열 및 노치의 피로강도평가

  • Kim Won-Beom (Research Institute of Industrial Technology, Pusan National University) ;
  • Paik Jeom-Kee (Naval Architecture & Ocean Engineering, Pusan National University) ;
  • Fujimoto Yukio (Dept. of Engineering Systems, Hiroshima University)
  • 김원범 (부산대학교 생산기술연구소) ;
  • 백점기 (부산대학교 공과대학 조선해양공학과) ;
  • 승본유기부 (히로시마대학 선박해양공학과)
  • Published : 2006.08.01

Abstract

Inherent damage zone model is presented to explain the fatigue properties near the fatigue limit and the crack growth threshold consistently Inherent damage zone model assumes that the stress at a point which is located at a small distance, $r_0$, an inherent length of the material that represents the size of effective damage zone, from the crack initiation position governs the fatigue characteristics regardless of the geometric configuration of the specimen; smooth specimen, notched specimen or cracked specimens with short and long crack length. A special feature of the paper is using the exact stress distributions of notched and cracked specimens at the strength evaluations. Analytical elastic solutions by Neuber and Westergaard are employed for this purpose Relationship between fatigue limit of smooth specimen and threshold stress of cracked specimen, occurrence condition of non-propagating crack at the root of elliptic notch and circular hole and relationship between stress concentration factor and fatigue notch factor are discussed quantitatively based on the proposed model.

Keywords

References

  1. 김원범, 1997, '강재의 해수환경중에서의 피로 강도평가에 관한 연구,' 히로시마대학 박사학위논문 (일본어)
  2. 김제동, 이종원, 홍창호, 1996, '복수표면균열을 갖는 구조요소의 피로수명예측,' 대한조선학회 논문집, 제 33권, 제 4호, pp. 75-86
  3. 김창욱, 노인식, 반헌호, 신병천, 2001a, '균열계폐구 거동을 고려한 피로균열전파해석모델의 개발: 균열계폐구거동의 모형화,' 대한조선학회 논문집, 제 38권, 제 3호, pp. 74-83
  4. 김창욱, 노인식, 도관수, 신병천, 2001b, '균열계폐구 거동을 고려한 피로균열전파해석모델의 개발: 수치계산,' 대한조선학회 논문집, 제 38권, 제 3호, pp. 84-92
  5. 김창욱, 노인식, 김대수, 2002a, '균열전파해석에 의한 선체의 피로수명평가법- 응력강도계수의 간이추정법-,' 대한조선학회 논문집, 제 39권, 제 1호, pp. 90-99
  6. 김창욱, 노인식, 도관수, 2002b, '등가분포응력을 이용한 피로균열전파해석에 관한 연구', 대한조선학회 논문집, 제 39권, 제 2호, pp. 61-68
  7. 노인식, 임채환, 1998, '경계요소-유한요소 혼합법에 의한 균열선단의 응력강도계수 계산 (제 1 보),' 대한조선학회 논문집, 제 35권, 제 4호, pp. 38-45
  8. 전유철, 김유일, 강중규, 한종만, 2001, '피로실험 및 균열진전해석을 통한 용접부의 피로수명 예측에 관한 연구,' 대한조선학회 논문집, 제 38권, 제 3호, pp. 61-68
  9. Frost, N.E., 1959, 'A Relation Between the Critical Alternating Propagation Stress and Crack Length for Mild Steel,' Proc. Instn. Mech, Engrs, Vol. 173, No.35, pp. 811-827
  10. Fujimoto, Y., Kim, W.B., Shintaku, E. and Huang, F., 1998, 'Inherent Damage Zone Model for Fatigue Strength Evaluation,' Journal of The Society of Naval Architects of Japan, Vol. 184, pp. 315-323
  11. Fujimoto, Y., Hamada, K. and Kim, W.B., 1999, 'Inherent Damage Zone Model for Strength Evaluation of Small Fatigue Cracks,' Proc. of the 13th Asian Technical Exchange and Advisory Meeting on Marine Structures, Keelung Taiwan, pp. 223-232
  12. Fujimoto, Y., Hamada, K., Shintaku, E. and Pirker, G., 2001, 'Inherent Damage Zone Model for Strength Evaluation of Small Fatigue Cracks,' Engineering Fracture Mechanics, Vol. 68, pp. 455-473 https://doi.org/10.1016/S0013-7944(00)00116-8
  13. Haddad, M.H.El, Topper, T.H. and Smith, K.N., 1979, 'Prediction of Non Propagating Cracks,' Engineering Fracture Mechanics, Vol. 11, pp. 573-584 https://doi.org/10.1016/0013-7944(79)90081-X
  14. Huang, Y. and Stein, E., 1996, 'Shakedown of a Cracked Body Consisting of Kinematic Hardening Material,' Engineering Fracture Mechanics, Vol. 54, No.1, pp.107-112 https://doi.org/10.1016/0013-7944(95)00119-0
  15. Ishibashi, T., 1967, Metal Fatigue and Prevent Ion of Fracture, Youkendou, pp. 59(in Japanese)
  16. Kim, W.B., 1998, 'Intrinsic Damage Zone Model for Fatigue Strength Evaluation,' Procee Dings of Symposium at Venture Business Laboratory, Hiroshima University, pp. 19-20(in Japanese)
  17. Kitagawa, H. and Takahashi, S., 1976, 'Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage,' Proc. 2nd Int. Conf. on Mechanical Behaviour of Materials, pp. 627-631
  18. Lindley, T., Mcintyre, P. and Trant, P.J., 1982, 'Fatigue Crack Initiation at Corrosion Pits,' Metal Technology, Vol. 9, pp. 135-142 https://doi.org/10.1179/030716982803286403
  19. Morita, K., Kajimoto, K., Murai, R., Fujii, M. and Shimogouchi H., 1991, 'Effect of Flaws on Fatigue Strength of Cast or Forged Materials,' Journal of The Society of Naval Architects of Japan, Vol. 170, pp. 745-753(in Japanese)
  20. Neuber, H., 1937, Kerbspannungslehre, Verlag Von Julius Springer, Berlin, pp. 50 & pp. 149(in German)
  21. Nishitani, H., 1983, 'Measure of Stress Field in a Notch Corresponding to Stress Intensity Factor in a Crack,' Transaction of Japan Society of Mechanical Engineers, Vol. 48, No. 447, pp. 1353-1359
  22. Okamura, H., 1976, Introduction of Linear Fracture Mechanics, Baihukan (in Japanese)
  23. Tanaka, K., Nakai, Y., and Yamashita, M., 1981, 'Fatigue Growth Threshold of Small Cracks,' Int. J. of Fracture, Vol. 17, No.5, pp. 519-533
  24. Tanaka, K., 'The Propagation of Small Fatigue Cracks,' 1984, J. Soc. Mater. Sci., Vol. 33, No. 371, pp. 961-972(in Japanese) https://doi.org/10.2472/jsms.33.961
  25. Society of Materials Science, 1978, Design Handbook of Metallic Materials, Youkendou, pp. 62 (in Japanese)
  26. Yokobori, T., Ishibashi, T. and Utoguchi, H., 1964, 'Strength and Fracture of Metallic Materials,' The Japan Institute of Metals, Maruzen, pp. 306 (in Japanese)