Long Term Feeding with Soy Isoflavone and L-Carnitine Synergistically Suppresses Body Weight Gain and Adiposity in High-Fat Diet Induced Obese Mice

  • Park Hyun-Woo (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Yang Mi-Suk (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Lee Ji-Hae (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Shin Eui-Seok (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Kim Yoo (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Chun Ji-Young (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Lee Tae-Ryong (Food Research Institute, AmorePacific Corporation R&D Center) ;
  • Lee Sang-Jun (Food Research Institute, AmorePacific Corporation R&D Center)
  • Published : 2006.08.01

Abstract

Objective: We investigated the efficacy of a 12-week supplementation of soy isoflavone with L-carnitine on the development of obesity in high fat-induced obese C57BL/6J mice, which are known as a good model of diet-induced obesity. Methods: We measured body weights, adipose tissue mass, serum/liver lipid profiles and fat cell size/number in C57BL/6J mice fed diets containing either low fat (4%) or high fat (35%), or high fat supplemented with soy isoflavone powder containing 10% isoflavone and L-camitine for 12 weeks. Results: Body weight gain, abdominal adipose tissue and liver weight were lower by 31% 78% and 31.4% respectively, in mice on high fat diet containing soy isoflavone+L-carnitine (SC mixture) compared with high fat diet group. Also, SC mixture improved serum lipid profiles such as total cholesterol (TC), triglycerides (TG), and liver lipid profiles such as total lipids and TG. As subsequent results, this SC mixture prevented high-fat diet from accumulating TG in the liver. The size of fat cell was also significantly decreased in SC mixture fed mice. At the end point of this experiment, our results showed that feeding with soy isoflavone for 12 weeks finally increased camitine palmitoyltransferase 1 (CPT 1) activity through elevating the level of CPT1 expression. Conclusions: This study suggests that long-tenn supplementation with dietary soy isoflavone and L-carnitine is more synergistically beneficial for the suppression of high-fat diet induced obesity by inhibiting liver TG accumulation and the gain in abdominal adipose tissue weight than that with soy isoflavone. The antiobesity effects of SC mixture might be attributed, at least in part, to the induction of fatty acid catabolism by soy isoflavone, genistein.

Keywords

References

  1. WHO. Report of a WHO Consultation on Obesity. Obesity: preventing and managing the global epidemic. World Health Organization, 1998
  2. Tham DM, Gardner CD, Haskell WL. Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83(7):2223-2235, 1998 https://doi.org/10.1210/jc.83.7.2223
  3. Velasquez MT, Bhathena SJ. Dietary phytoestrogens: a possible role in renal disease protection. Am J Kidney Dis 37(5): 1056-1068, 2001 https://doi.org/10.1016/S0272-6386(05)80025-3
  4. Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3 Suppl):439S-450S, 1999
  5. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol 35(6):1403-1410, 2000 https://doi.org/10.1016/S0735-1097(00)00590-8
  6. Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76(6):1191-1201, 2002 https://doi.org/10.1093/ajcn/76.6.1191
  7. Anderson JW, Smith BM, Washnock CS. Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 70(3 Suppl):464S-474S, 1999
  8. Adlercreutz H, Mazur W. Phyto-oestrogens and Western diseases. Ann Med 29(2):95-120, 1997 https://doi.org/10.3109/07853899709113696
  9. Goodman-Gruen D, Kritz-Silverstein D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J Nutr 131(4):1202-1206, 2001
  10. Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR. Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L-carnitine. Eur J Nutr 45(3):159-164, 2006 https://doi.org/10.1007/s00394-005-0576-5
  11. Kim S, Sohn I, Lee YS, Lee YS. Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 135(1):33-41, 2005 https://doi.org/10.1093/jn/135.1.33
  12. Kim S, Shin HJ, Kim SY, Kim JH, Lee YS, Kim DH, Lee MO. Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARalpha. Mol Cell Endoerinol 220(1-2):51-58, 2004 https://doi.org/10.1016/j.mce.2004.04.012
  13. Dixon RA, Ferreira D. Genistein Phytochemistry 60(3):205-211, 2002 https://doi.org/10.1016/S0031-9422(02)00116-4
  14. Wagner JD, Cefalu WT, Anthony MS, Litwak KN, Zhang L, Clarkson TB. Dietary soy protein and estrogen replacement therapy improve cardiovascular risk factors and decrease aortic cholesteryl ester content in ovariectomized cynomolgus monkeys. Metabolism 46(6):698-705, 1997 https://doi.org/10.1016/S0026-0495(97)90016-0
  15. Szkudelska K, Nogowski L, Szkudelski T. Genistein affects lipogenesis and lipolysis in isolated rat adipocytes. J Steroid Biochem Mol Biol 75(4-5):265-271, 2000 https://doi.org/10.1016/S0960-0760(00)00172-2
  16. Harmon AW, Harp JB. Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 280(4):C807-813, 2001 https://doi.org/10.1152/ajpcell.2001.280.4.C807
  17. Nogowski L, Mackowiak P, Kandulska K, Szkudelski T, Nowak KW. Genistein-induced changes in lipid metabolism of ovariectomized rats. Ann Nutr Metab 42(6):360-366, 1998 https://doi.org/10.1159/000012756
  18. Kojima T, Uesugi T, Toda T, Miura Y, Yagasaki K. Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats. Lipids 37(3):261-265, 2002 https://doi.org/10.1007/s11745-002-0889-z
  19. Schleicher RL, Lamartiniere CA, Zheng M, Zhang M. The inhibitory effect of genistein on the growth arid metastasis of a transplantable rat accessory sex gland carcinoma. Cancer Lett 136(2):195-201, 1999 https://doi.org/10.1016/S0304-3835(98)00322-X
  20. Michael MR, Wolz E, Davidovich A, Pfannkuch F, Edwards JA, Bausch J. Acute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol 44(1):56-80, 2006 https://doi.org/10.1016/j.fct.2005.05.021
  21. Eaton S. Control of mitochondrial beta-oxidation flux. Prog Lipid Res 41(3): 197-239, 2002 https://doi.org/10.1016/S0163-7827(01)00024-8
  22. West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol 262 (6 Pt 2):R1025-1032, 1992
  23. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911-917; 1959 https://doi.org/10.1139/o59-099
  24. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 214(1):21-28, 1983 https://doi.org/10.1042/bj2140021
  25. Zierz S, Engel AG. Different sites of inhibition of carnitine palmitoyltransferase by malonyl-CoA, and by acetyl-CoA and CoA, in human skeletal muscle. Biochem J 245(1):205-209, 1987 https://doi.org/10.1042/bj2450205
  26. Kozak LP, Jensen JT. Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J Biol Chem 249(24):7775-7781, 1974
  27. Jensen B, Farach-Carson MC, Kenaley E, Akanbi KA. High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp Cell Res 301(2):280-292, 2004 https://doi.org/10.1016/j.yexcr.2004.08.030
  28. Wise LS, Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem 254(2):273-275, 1979
  29. Linn TC. Purification and crystallization of rat liver fatty acid synthetase. Arch Biochem Biophys 209(2):613-619, 1981 https://doi.org/10.1016/0003-9861(81)90320-9
  30. Murase T, Mizuno T, Omachi T, Onizawa K, Komine Y, Kondo H, Hase T, Tokimitsu I. Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. J Lipid Res 42(3):372-378, 2001
  31. Han LK, Xu BJ, Kimura Y, Zheng Y, Okuda H. Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. J Nutr 130(11):2760-2764, 2000
  32. Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol Genet Metab 75(3):219-226, 2002 https://doi.org/10.1006/mgme.2002.3298
  33. Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a review. J Anim Sci 76(5):1405-1420, 1998
  34. McGarry JD, Robles-Valdes C, Foster DW. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci US4 72(11):4385-4388, 1975
  35. Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, Leveille GA, Van Horn L, Williams CL, Booth SL. Dietary fat consumption and health. Nutr Rev 56(5 Pt 2):S3-28, 1998
  36. Libinaki R, Heffernan M, Jiang WJ, Ogru E, Ignjatovic V, Gianello R, Trickey L, Taylor M, Ng F. Effects of genetic and diet-induced obesity on lipid metabolism. IUBMB Life 48(1):109-113, 1999 https://doi.org/10.1080/713803473
  37. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103(11):1489-1498, 1999 https://doi.org/10.1172/JCI6223
  38. Mezeio O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 133(5):1238-1243, 2003
  39. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5): 649-688, 1999 https://doi.org/10.1210/er.20.5.649
  40. Lonnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1(9):950-953, 1995 https://doi.org/10.1038/nm0995-950
  41. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene.Science 269(5223):543-546, 1995 https://doi.org/10.1126/science.7624777
  42. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155-1161, 1995 https://doi.org/10.1038/nm1195-1155
  43. fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36(1):54-59, 1987 https://doi.org/10.1016/0026-0495(87)90063-1