Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405

  • Seo Myung-Ji (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Im Eun-Mi (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Singh Deepak (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Rajkarnikar Arishma (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Kwon Hyung-Jin (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Hyun Chang-Gu (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Suh Joo-Won (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University) ;
  • Pyun Yu-Ryang (Department of Biotechnology, Yonsei University) ;
  • Kim Soon-Ok (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
  • Published : 2006.08.01

Abstract

Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.

Keywords

References

  1. Andreone, T. L., R. L. Printz, S. J. Plikis, M. A. Magnuson, and D. K. Granner. 1989. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J. BioI. Chem. 264: 363-369
  2. Asano, N., T. Yamaguchi, Y. Kameda, and K. Matsui. 1987. Effect of validamycins on glycohydrolases of Rhizoctonia solani. J. Antibiot. 40: 526-532 https://doi.org/10.7164/antibiotics.40.526
  3. Beyer, S., G. Mayer, and W. Piepersberg. 1998. The StrQ protein encoded in the gene cluster for 5'-hydroxystreptomycin of Streptomyces glaucescens GLA.0 is a $\alpha$-$_D$-glucose-1-phosphate cytidylyltransferase (CDP-$_D$-glucose synthase). Eur. J. Biochem. 258: 1059-1067 https://doi.org/10.1046/j.1432-1327.1998.2581059.x
  4. Brown, K., F. Pompeo, D. Dixon, D. Mengin-Lecreulx, C. Cambillau, and Y. Bourne. 1999. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: A paradigm for the related pyrophosphorylase superfamily. EMBO J. 18: 4906-4107
  5. Dong, H., T. Mahmud, I. Tornus, S. Lee, and H. G. Floss. 2001. Biosynthesis of the validamycins: Identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J. Am. Chem. Soc. 123: 2733-2742 https://doi.org/10.1021/ja003643n
  6. Gonzali, S., L. Pistelli, L. De Bellis, and A. Alpi. 2001. Characterization of two Arabidopsis thaliana fructokinases. Plant Sci. 160: 1107-1114 https://doi.org/10.1016/S0168-9452(01)00350-8
  7. Goward, C. R., R. Hartwell, T. Atkinson, and M. D. Scawen. 1986. The purification and characterization of glucokinase from the thermophile Bacillus stearothermophilus. Biochem. J. 237: 415-420 https://doi.org/10.1042/bj2370415
  8. Hansen, T., B. Reichstein, R. Schmid, and P. Schonheit, 2002. The first archaeI ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J. Bacteriol. 184: 5955-5965 https://doi.org/10.1128/JB.184.21.5955-5965.2002
  9. Hansen, T. and P. Schonheit, 2003. ATP-dependent glucokinase from hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity. FEMS Microbiol. Lett. 226: 405-411 https://doi.org/10.1016/S0378-1097(03)00642-6
  10. Heppel, L. A., D. R. Harkness, and R. J. Hilmoe. 1962. A study of substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J. Biol. Chem. 237: 841-846
  11. Horii, S., Y. Kameda, and K. Kawahara. 1972. Studies on validamycins, new antibiotics. VIII. Isolation and characterization of validamycins C, D, E and F. J. Antibiot. 25: 48-53 https://doi.org/10.7164/antibiotics.25.48
  12. Iwasa, T., H. Yamamoto, and M. Shibata. 1970. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. J. Antibiot. 23: 595-602 https://doi.org/10.7164/antibiotics.23.595
  13. Jo, Y.-Y.; J. Liu, Y.-Y. Jin, Y.-Y. Yang, and J.-W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Streptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496
  14. Jo, Y.-Y., S.-H. Kim, Y.-Y. Yang, C.-M. Kang, J.-K. Sohng, and J.-W. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC 27741. J. Microbiol. Biotechnol. 13: 906-911
  15. Kameda, Y., N. Asano, T. Yamaguchi, and K. Matsui. 1986. Validamycin G and validoxylamine G, new members of the validamycins. J. Antibiot. 39: 1491-1494 https://doi.org/10.7164/antibiotics.39.1491
  16. Lee, H.-C., J.-K. Sohng, H.-J. Kim, D.-H. Nam, C.-N. Seong, J.-M. Han, and J.-C. Yoo. 2004. Cloning, expression, and biochemical characterization of dTDP-glucose 4,6-dehydratase gene (gerE) from Streptomyces sp. GERI-155. J. Microbiol. Biotechnol. 14: 576-583
  17. Meyer, D., C. Schneider-Fresenius, R. Horlacher, R. Peist, and W. Boss. 1997. Molecular characterization of glucokinase from Escherichia coli K-12. J. Bacteriol. 179: 1298-1306 https://doi.org/10.1128/jb.179.4.1298-1306.1997
  18. Nioh, T. and S. Mizushima. 1974. Effect of validamycin on the growth and morphology of Pellicularia saskii. J. Gen. Appl. Microbiol. 20: 373-383 https://doi.org/10.2323/jgam.20.373
  19. Robson, G. D., P. J. Kuhn, and A. P. Trinci. 1988. Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J. Gen. Microbiol. 134: 3187-3194
  20. Singh, D., M.-J. Seo, H.-J. Kwon, A. Rajkamikar, K.-R. Kim, S.-O. Kim, and J.- W. Suh. 2005. Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene (in press)
  21. Suami, T., S. Ogawa, and N. Chida. 1980. The revised structure ofvalidamycin A. J. Antibiot. 33: 98-99 https://doi.org/10.7164/antibiotics.33.98
  22. Yu, Y., L. Bai, K. Minagawa, X. Jian, L. Li, J. Li, S. Chen, E. Cao, T. Mahmud, H. G. Floss, X. Zhou, and Z. Deng. 2005. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl. Environ. Microbiol. 71: 5066-5076 https://doi.org/10.1128/AEM.71.9.5066-5076.2005
  23. Zhao, X.-Q., K.-R. Kim, L.-W. Sang, S.-H. Kang, Y.-Y. Yang, and J.- W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353