Selection of Multienzyme Complex-Producing Bacteria Under Aerobic Cultivation

  • Pason Patthra (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Chon Gil-Hyong (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Ratanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kyu Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Jhee Ok-Hwa (Department of Pharmacology, College of Medicine, Hanyang University) ;
  • Kang Ju-Seop (Department of Pharmacology, College of Medicine, Hanyang University) ;
  • Kim Won-Ho (Division of Infractable Disease, Center for Biomedical science, National Institute of Health) ;
  • Choi Kyung-Min (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Park Gil-Soon (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Lee Jin-Sang (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Park Hyun (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Rho Min-Suk (Department of Applied Biochemistry, Konkuk University) ;
  • Lee Yun-Sik (Department of Infection Biology, College of Medicine, Wonkwang University)
  • Published : 2006.08.01

Abstract

The selection of multienzyme complex-producing bacteria under aerobic condition was conducted for improving the degradation of lignocellulosic substances. The criteria for selection were cellulase and xylanase enzyme production, the presence of cellulose-binding domains and/or xylan-binding domains in enzymes to bind to insoluble substances, the adhesion of bacterial cells to insoluble substances, and the production of multiple cellulases and xylanases in a form of a high molecular weight complex. Among the six Bacillus strains, isolated from various sources and deposited in our laboratory, Paenibacillus curdlanolyticus B-6 strain was the best producer of cellulase and xylanase enzymes, which have both cellulose-binding factors (CBFs) and xylan-binding factors (XBFs). Moreover, multiple carboxymethyl cellulases (CMCases) and xylanases were produced by the strain B-6. The zymograms analysis showed at least 9 types of xylanases and 6 types of CMCases associated in a protein band of xylanase and cellulase with high molecular weight. These cells also enabled to adhere to both avicel and insoluble xylan, which were analyzed by scanning electron microscopy. The results indicated that the strain B-6 produced the multienzyme complex, which may be cellulosome or xylanosome. Thus, P. curdlanolyticus B-6 was selected to study the role and interaction between the enzymes and their substrates and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure for efficient cellulases and xylanases degradation of insoluble polysaccharides.

Keywords

References

  1. Bayer, E. A., R. Kenig, and R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156: 818-827
  2. Bayer, E. A. and R. Lamed. 1991. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167: 828-836
  3. Bayer, E. A, E. Morag, and R. Lamed. 1994. The cellulosome: A treasuretrove for biotechnology. Trends Biotechnol. 12: 379-386 https://doi.org/10.1016/0167-7799(94)90039-6
  4. Bayer, E. A, E. Setter, and R. Lamed. 1985. Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163: 552-559
  5. Bayer, E. A, L. J. W. Shimon, Y. Shoham, and R. Lamed. 1998. Cellulosome - Structure and ultrastructure. J. Structural BioI. 124: 221-234 https://doi.org/10.1006/jsbi.1998.4065
  6. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58 https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  7. Berg, B., B. V. Hofstan, and B. Petterson. 1972. Growth and cellulase formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214 https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
  8. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  9. Coughlan, M. P. and L. G. Ljungdahl. 1988. Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. FEMS Symp. 43: 11-30
  10. Eriksson, K. E., R. A. Blanchette, and P. Ander. 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer-Verlag, Berlin
  11. Garrity, G. 2001. In Claus, D. and Berkeley, R. C. W. (eds.). Bergey s Manual of Systematic Bacteriology. Vol. 2: Endospore-forming gram-positive rods and cocci Springer Press, pp. 1104-1207
  12. Ghangas, G. S., Y. J. Hu, and O. B. Wilson. 1989. Cloning of a Thermomonosporafusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J. Bacteriol. 171: 2963-2969 https://doi.org/10.1128/jb.171.6.2963-2969.1989
  13. Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl. Environ. Microbiol. 55: 3039-3044
  14. Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and betaxylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  15. Innis, M. A and D. H. Gelfand. 1990. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds.). A Guide to Methods and Application: Optimization of PCRs, PCR protocols. San Diego, Academic Press, pp. 3-12
  16. Jiang, Z. Q., W. Deng, L. T. Li, C. H. Ding, I. Kusakabe, and S. S. Tan. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26: 431-436 https://doi.org/10.1023/B:BILE.0000018266.75248.03
  17. Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766-772
  18. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  19. Klyosov, A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29: 10577-10585 https://doi.org/10.1021/bi00499a001
  20. Lamed, R., E. Morag, O. Mor-Yosef, and E. A. Bayer. 1991. Cellulosome-like entities in Bacteroides cellulosovens. Curr. Microbiol. 22: 27-33 https://doi.org/10.1007/BF02106209
  21. Lamed, R., L. E. Setter, and E. A. Bayer. 1983. Characterization of a cellulose binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156: 828-836
  22. Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG22. J. Microbiol. Biotechnol. 14: 1014-1021
  23. Lee, Y.-S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. S. Rho, Y.-S. Kim, A. S. Om, J.- W. Lee, O. H. Jhee, G.-H. Chon, H. Park, and J. S. Kang. 2006. Production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: in press
  24. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  25. Mayer, F., M. P. Coughlan, Y. Mori, and L. G. Ljungdahl. 1987. Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53: 2785-2792
  26. Morag, E., E. A. Bayer, and R. Lamed. 1992. Infinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum. Enzyme Microbiol Technol. 14: 289-292 https://doi.org/10.1016/0141-0229(92)90153-F
  27. Morris, E. J. 1988. Characteristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol. Lett. 51: 113-118 https://doi.org/10.1111/j.1574-6968.1988.tb02980.x
  28. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
  29. Ponpium, P., K. Ratanakhanokchai, and K. L. Kyu. 2000. Isolation and properties of a cellulosome type multienzyme complex of the thermophilic Bacteroides sp. strain P-I. Enzyme Microbiol Technol. 26: 459-465 https://doi.org/10.1016/S0141-0229(99)00195-7
  30. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties ofaxylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
  31. Roger, Y., G. Fonty, S. Komisarczuk-Bony, and P. Gouet. 1990. Effects of physicochemical factors on the adhesion of cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56: 3081-3087
  32. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298 https://doi.org/10.1099/00207713-47-2-289
  33. Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 19-23
  34. Song, H. H., M. J. Gill, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide subtilein. J. Microbiol. Biotechnol. 15: 1054-1059
  35. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  36. Tachaapaikoon, C., Y.-S. Lee, K. Ratanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S.-K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618