Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Chon Gil-Hyong (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Lee Jin-Sang (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Kongkiattikajorn Jirasak (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Ratanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kyu Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Lee John-Hwa (College of Veterinary Medicine, Chonbuk National University) ;
  • Roh Min-Suk (Department of Applied Biochemistry, Konkuk University) ;
  • Choi Yun-Young (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Park Hyun (Department of Infection Biology, College of Medicine, Wonkwang University) ;
  • Lee Yun-Sik (Department of Infection Biology, College of Medicine, Wonkwang University)
  • Published : 2006.08.01

Abstract

An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Keywords

References

  1. Baker, U., S. Yavascaoglu, F. Guvenc, and A. Ersayin. 2001. An endo-$\beta$ -1,4-xylanase from Rhizopus oryzae: Production, partial purification and biochemical characterization. Enzyme Microb. Technol. 29: 328-334 https://doi.org/10.1016/S0141-0229(01)00379-9
  2. Berg, B., B. V. Hofstan, and G. Petterson. 1972. Growth and cellulose fermentation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214 https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
  3. Biely, P., J. Puis, and H. Schneider. 1985. Acetyl xylan esterase in fungal cellulolytic systems. FEBS Lett. 186: 8084
  4. Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307: 191-195 https://doi.org/10.1042/bj3070191
  5. Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63
  6. Coughlan, M. P., M. G. Tuohy, E. X. F. Filho, J. Puis, M. Claeyssens, M. Vrsanska, and M. H. Hughes. 1993. Enzymological aspects of microbial hemicellulases with emphasis on fungal systems, pp. 53-84. In Coughlan, M. P. and G. P. Hazlewood (eds.), Hemicelluloses and Hemicellulases. Portland Press, London
  7. Ferrira, L. M. A, D. M. Wood, and G. Williamson. 1993. A modular esterase from Pseudomonas fluorescens subspcellulosa contains identical cellulose-binding domain. Biochem. J. 294: 349-355 https://doi.org/10.1042/bj2940349
  8. Gilkes, N. R., B. Henrissat, D. G. Kilburn, Jr. R. C. Miller, and R. A. J. Warren. 1991. Domains in microbial $\beta$-1 ,4-glycanases: Sequence conservation, function and enzyme families. Microbiol. Rev. 55: 303-315
  9. Hall, J., G. W Black, L. M. A. Ferreira, S. H. MillwardSadler, and B. R. S. Ali. 1995. The non-catalytic cellulosebinding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of avicel. Biochem. J. 309: 749-756 https://doi.org/10.1042/bj3090749
  10. Hayn, M., W. Steiner, R. Kinger, H. Steinmuller, M. Sinner, and H. Esterbauer. 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics, pp. 33-72. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
  11. Heo, S. Y, J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and betaxylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  12. Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca. Appl. Environ. Microbiol. 60: 763-770
  13. Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular u-t-arabinofurancsidase from Aspergillus niger 5-16. Biosci. Biotechnol. Biochem. 57: 1161-1165 https://doi.org/10.1271/bbb.57.1161
  14. Kang, S. C., H. J. Kim, S. W Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766-772
  15. Kantelinen, A, T. Rantanen, and J. Buchert. 1993. Enzymatic solubilization of fiber-bound and isolated birchwood xylans. J. Biotechnol. 28: 219-228 https://doi.org/10.1016/0168-1656(93)90171-I
  16. Karita, S., K. Sakka, and K. Ohmiya. 1996. Cellulose-binding domain confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556 https://doi.org/10.1016/0922-338X(96)81479-6
  17. Kelett, L. E., D. M. Poole, L. M. A. Ferreira, A. J. Durrant, G. P. Hazlewood, and H. J. Gilbert. 1990. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem. J. 272: 369-376 https://doi.org/10.1042/bj2720369
  18. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  19. Klier, A. F. and G. Rapoport. 1988. Genetic and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65-95 https://doi.org/10.1146/annurev.mi.42.100188.000433
  20. Kyu, K. L., K. Ratanakhanokchai, M. Tanticharoen, T. Ratanarojmongkol, and S. T. Chen. 2001. Hydrolysis of lignocellulosic materials and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. K-1. J. Natl. Res. Council Thailand 33: 39-54
  21. Kyu, K. L., K. Ratanakhanokchai, D. Uitapap, and M. Tanticharoen. 1994. Induction of xylanase in Bacillus circulans B6. Bioresour. Technol. 48: 163-167 https://doi.org/10.1016/0960-8524(94)90204-6
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  23. Lee Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG22. J. Microbiol. Biotechnol. 12: 1014-1021
  24. Lee, Y. E., S. E. Lowe, and G. Zeikus. 1993. Regulationand characterization of xylanolytic enzymes of Tbermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 763-771
  25. Lowry, O. H., N. H. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. BioI. Chem. 193: 265-275
  26. Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Molec. Microbiol. 11: 375-382 https://doi.org/10.1111/j.1365-2958.1994.tb00317.x
  27. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
  28. PuIs, J. and J. Schuseil. 1993. Chemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis, pp. 1-28. In Coughlan, M. P. and G. P. Hazlewood. (eds.), Hemicellulose and Hemicellulases. Portland Press Ltd., London
  29. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties ofxylan-binding endoxylanase from alkaliphilic Bacillus sp. K-1. Appl. Environ. Microbiol. 65: 694-697
  30. Senior,D. J., P. R. Meyers, D. Miller, R. Sutcliffe, L. Tan, and J. N. Saddler. 1988. Selective solubilization ofxylan in pulp using a purified xylanase from Trichoderma harzianurn. Biotechnol. Lett. 10: 907-912 https://doi.org/10.1007/BF01027004
  31. Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 19-23
  32. Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J. Ferment. Bioeng, 85: 63-68 https://doi.org/10.1016/S0922-338X(97)80355-8
  33. Song, H. H., M. J. Gill, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide subtilein. J. Microbiol. Biotechnol. 15: 1054-1059
  34. Sunna, A. and G. Antrankian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  35. Tsujibo, H., T. Ohtsuki, T. Ilo, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
  36. Viikari, L., A. Kantellinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Lett. 13: 335-350 https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
  37. Viikari, L., M. Tenkanen, and J. Buchert. 1993. Hemicellulase from industrial applications, pp. 131-182. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
  38. Wheals, A. E., L. C. Basso, D. M. G Alves, and H. V. Amorim. 1999. Fuel, ethanol after 25 years. Trends Biotechnol. 17: 482-487 https://doi.org/10.1016/S0167-7799(99)01384-0