References
-
Baker, U., S. Yavascaoglu, F. Guvenc, and A. Ersayin. 2001. An endo-
$\beta$ -1,4-xylanase from Rhizopus oryzae: Production, partial purification and biochemical characterization. Enzyme Microb. Technol. 29: 328-334 https://doi.org/10.1016/S0141-0229(01)00379-9 - Berg, B., B. V. Hofstan, and G. Petterson. 1972. Growth and cellulose fermentation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214 https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
- Biely, P., J. Puis, and H. Schneider. 1985. Acetyl xylan esterase in fungal cellulolytic systems. FEBS Lett. 186: 8084
- Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307: 191-195 https://doi.org/10.1042/bj3070191
- Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63
- Coughlan, M. P., M. G. Tuohy, E. X. F. Filho, J. Puis, M. Claeyssens, M. Vrsanska, and M. H. Hughes. 1993. Enzymological aspects of microbial hemicellulases with emphasis on fungal systems, pp. 53-84. In Coughlan, M. P. and G. P. Hazlewood (eds.), Hemicelluloses and Hemicellulases. Portland Press, London
- Ferrira, L. M. A, D. M. Wood, and G. Williamson. 1993. A modular esterase from Pseudomonas fluorescens subspcellulosa contains identical cellulose-binding domain. Biochem. J. 294: 349-355 https://doi.org/10.1042/bj2940349
-
Gilkes, N. R., B. Henrissat, D. G. Kilburn, Jr. R. C. Miller, and R. A. J. Warren. 1991. Domains in microbial
$\beta$ -1 ,4-glycanases: Sequence conservation, function and enzyme families. Microbiol. Rev. 55: 303-315 - Hall, J., G. W Black, L. M. A. Ferreira, S. H. MillwardSadler, and B. R. S. Ali. 1995. The non-catalytic cellulosebinding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of avicel. Biochem. J. 309: 749-756 https://doi.org/10.1042/bj3090749
- Hayn, M., W. Steiner, R. Kinger, H. Steinmuller, M. Sinner, and H. Esterbauer. 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics, pp. 33-72. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
- Heo, S. Y, J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and betaxylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
- Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca. Appl. Environ. Microbiol. 60: 763-770
- Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular u-t-arabinofurancsidase from Aspergillus niger 5-16. Biosci. Biotechnol. Biochem. 57: 1161-1165 https://doi.org/10.1271/bbb.57.1161
- Kang, S. C., H. J. Kim, S. W Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766-772
- Kantelinen, A, T. Rantanen, and J. Buchert. 1993. Enzymatic solubilization of fiber-bound and isolated birchwood xylans. J. Biotechnol. 28: 219-228 https://doi.org/10.1016/0168-1656(93)90171-I
- Karita, S., K. Sakka, and K. Ohmiya. 1996. Cellulose-binding domain confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556 https://doi.org/10.1016/0922-338X(96)81479-6
- Kelett, L. E., D. M. Poole, L. M. A. Ferreira, A. J. Durrant, G. P. Hazlewood, and H. J. Gilbert. 1990. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem. J. 272: 369-376 https://doi.org/10.1042/bj2720369
- Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
- Klier, A. F. and G. Rapoport. 1988. Genetic and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65-95 https://doi.org/10.1146/annurev.mi.42.100188.000433
- Kyu, K. L., K. Ratanakhanokchai, M. Tanticharoen, T. Ratanarojmongkol, and S. T. Chen. 2001. Hydrolysis of lignocellulosic materials and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. K-1. J. Natl. Res. Council Thailand 33: 39-54
- Kyu, K. L., K. Ratanakhanokchai, D. Uitapap, and M. Tanticharoen. 1994. Induction of xylanase in Bacillus circulans B6. Bioresour. Technol. 48: 163-167 https://doi.org/10.1016/0960-8524(94)90204-6
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lee Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG22. J. Microbiol. Biotechnol. 12: 1014-1021
- Lee, Y. E., S. E. Lowe, and G. Zeikus. 1993. Regulationand characterization of xylanolytic enzymes of Tbermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 763-771
- Lowry, O. H., N. H. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. BioI. Chem. 193: 265-275
- Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Molec. Microbiol. 11: 375-382 https://doi.org/10.1111/j.1365-2958.1994.tb00317.x
- Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
- PuIs, J. and J. Schuseil. 1993. Chemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis, pp. 1-28. In Coughlan, M. P. and G. P. Hazlewood. (eds.), Hemicellulose and Hemicellulases. Portland Press Ltd., London
- Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties ofxylan-binding endoxylanase from alkaliphilic Bacillus sp. K-1. Appl. Environ. Microbiol. 65: 694-697
- Senior,D. J., P. R. Meyers, D. Miller, R. Sutcliffe, L. Tan, and J. N. Saddler. 1988. Selective solubilization ofxylan in pulp using a purified xylanase from Trichoderma harzianurn. Biotechnol. Lett. 10: 907-912 https://doi.org/10.1007/BF01027004
- Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 19-23
- Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J. Ferment. Bioeng, 85: 63-68 https://doi.org/10.1016/S0922-338X(97)80355-8
- Song, H. H., M. J. Gill, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide subtilein. J. Microbiol. Biotechnol. 15: 1054-1059
- Sunna, A. and G. Antrankian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
- Tsujibo, H., T. Ohtsuki, T. Ilo, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
- Viikari, L., A. Kantellinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Lett. 13: 335-350 https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
- Viikari, L., M. Tenkanen, and J. Buchert. 1993. Hemicellulase from industrial applications, pp. 131-182. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
- Wheals, A. E., L. C. Basso, D. M. G Alves, and H. V. Amorim. 1999. Fuel, ethanol after 25 years. Trends Biotechnol. 17: 482-487 https://doi.org/10.1016/S0167-7799(99)01384-0