Purification and Characterization of Bile Salt Hydrolase from Lactobacillus plantarum CK 102

  • Ha Chul-Gyu (Department of Biochemistry and Molecular Biology, Hanyang University) ;
  • Cho Jin-Kook (Department of Dairy Science and Gyonggi-do Regional Research Center, Hankyong National University) ;
  • Chai Young-Gyu (Department of Biochemistry and Molecular Biology, Hanyang University) ;
  • Ha Young-Ae (Department of Occupational Medicine, Dong-Kang General Hospital) ;
  • Shin Shang-Hun (Department of Diagnostic Radiology, University of Ulsan College of Medicine, Ulsan University Hospital)
  • 발행 : 2006.07.01

초록

A bile salt hydrolase (BSH) was purified from Lactobacillus plantarum CK 102 and its enzymatic properties were characterized. This enzyme was successfully purified using ion-exchange chromatography with Q-Excellose and hydrophobic interaction chromatography with Butyl-Excellose. The purified enzyme showed a single protein band of 37 kDa by SDS-polyacrylamide gel electrophoresis, which was similar to the molecular weight of known BSHs. The amino acid sequence of GLGLPGDLSSMSR, determined by MALDI-TOF, was identical to that of BSH of L. plantarum WCFS1. Although this BSH hydrolyzed all of the six major human bile salts, glycine-conjugated bile acid was the best substrate, based on its specificity and $K_{m}$ value. Among the various substrates, the purified enzyme maximally hydrolyzed glycocholate with apparent $K_{m}$ and $V_{max}$ values of 0.5 mM and 94 nmol/min/mg, respectively. The optimal pH of the enzyme ranged from 5.8 to 6.3. This enzyme was strongly inhibited by thiol enzyme inhibitors such as iodoacetate and periodic acid.

키워드

참고문헌

  1. Ane, K., M. E. Ricarda, K. J. Soren, and B. J. Bent. 2002. Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Am. Soc. Microbiol. 68: 6425-6428
  2. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Christiaens, H., R. J. Leer, P. H. Pouwels, and W. Verstraete. 1992. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792-3798
  4. Coleman, J. P. and L. L. Hudson. 1995. Cloning and characterization of conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61: 2514-2520
  5. Elkins, C. A. and D. C. Savage. 1988. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Appl. Bacteriol. 49: 193-197
  6. Gopal-Srivastava, R. and P. B. Hylemon. 1990. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29: 1079-1085
  7. Grill, J. P., F. Schneider, J. Crociani, and J. Ballonge. 1995. Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61: 2577-2582
  8. Griffin, T. J. and R. Aebersold. 2001. Advances in proteome analysis by mass spectrometry. J. Biol. Chem. 276: 45497-45500 https://doi.org/10.1074/jbc.R100014200
  9. Gunn, J. S. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2: 907-913 https://doi.org/10.1016/S1286-4579(00)00392-0
  10. Ha, C. G., J. K. Cho, Y. G. Chai, and K. C. Heo. 2004. Isolation and identification of lactic acid bacteria having superior activity of the bile salts deconjugation. Korean J. Food Sci. Anim. Resour. 24: 164-170
  11. Han, S.- Y., C.-S. Huh, Y.- T. Ahn, K.-S. Lim, Y.-J. Baek, and D.-H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890
  12. Han, Y.-J. and T.-S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
  13. Hancock, W. S., S. L. Wu, and P. Shieh. 2002. The challenges of developing a sound proteomics strategy. Proteomics 2: 352-359 https://doi.org/10.1002/1615-9861(200204)2:4<352::AID-PROT352>3.0.CO;2-U
  14. Henzel, W. J., C. Watanabe, and J. T. Stults. 2001. Protein identification of the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 14: 931-942 https://doi.org/10.1016/S1044-0305(03)00214-9
  15. Jones, M. L., H. Chen, W. Ouyang, T. Metz, and S. Prakash. 2004. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 1: 61-69
  16. Kim, G. B., S. H. Yi, and B. H. Lee. 2004. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. Am. Dairy Sci. Assoc. 87: 258-266 https://doi.org/10.3168/jds.S0022-0302(04)73164-1
  17. Kleerebezem, M., T. Boekhorst, and R. Kranenburg. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Microbiology 100: 1990-1995
  18. Lahm, H.- W. and H. Langen. 2000. Mass spectrometry: A tool for the identification of proteins separated by gels. Electrophoresis 21: 2105-2114 https://doi.org/10.1002/1522-2683(20000601)21:11<2105::AID-ELPS2105>3.0.CO;2-M
  19. Lammli, H. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  20. Lee, H. Y., J. H. Park, S. H. Seok, S. A. Cho, M. W. Baek, D. J. Kim, Y. H. Lee, and J. H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol.14: 167-170
  21. Leer, R. J., H. Christiaens, W. Verstraete, L. Peters, M. Posno, and P. H. Pouwels. 1993. Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: Isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239: 269-272 https://doi.org/10.1007/BF00281627
  22. Lundeen, S. G. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172: 4171-4177
  23. Macdonald, I. A., V. D. Bokkenheuser, J. Winter, A. M. McLernon, and E. H. Mosbach. 1983. Degradation of steroids in the human gut. J. Lipid Res. 24: 675-700
  24. Mann, M., R. C. Hendrickson, and A. Pandery. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473 https://doi.org/10.1146/annurev.biochem.70.1.437
  25. Matsudaira, P. 1987. Sequence from picomole quantities of proteins eletroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035-10038
  26. Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405: 837-846 https://doi.org/10.1038/35015709
  27. Saavedra, L., M. P. Taranto, F. Sesma, and G. F. De Valdez. 2003. Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int. J. Food Microbiol. 88: 241-245 https://doi.org/10.1016/S0168-1605(03)00186-7
  28. Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535 https://doi.org/10.3168/jds.S0022-0302(99)75506-2
  29. Taranto, M. P., G. Perdigon, M. Medici, and G. F. De Valdez. 2004. Animal model for in vivo evaluation of cholesterol reduction by lactic acid bacteria. Methods Mol. Biol. 268: 417-422
  30. Taranto, M. P., M. L. Fernandez Murga, G. Lorca, and G. F. De Valdez. 2003. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95: 86-91 https://doi.org/10.1046/j.1365-2672.2003.01962.x
  31. Wijaya, A., A. Hermann, H. Abriouel, I. Specht, N. M. Yousif, W. H. Holzapfel, and C. M. Franz. 2004. Cloning of the bile salt hydrolase (BSH) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of BSH genes in food enterococci. J. Food Prot. 67: 2772-2778 https://doi.org/10.4315/0362-028X-67.12.2772
  32. Yi, J. H., H.-K. Jang, S.-J. Lee, K.-E. Lee, and S.-G. Choi. 2004. Purification and properties of chitosanase from chitinolytic $\beta$-proteobacterium KNU3. J. Microbiol. Biotechnol. 14: 337-343