References
- Ane, K., M. E. Ricarda, K. J. Soren, and B. J. Bent. 2002. Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Am. Soc. Microbiol. 68: 6425-6428
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Christiaens, H., R. J. Leer, P. H. Pouwels, and W. Verstraete. 1992. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792-3798
- Coleman, J. P. and L. L. Hudson. 1995. Cloning and characterization of conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61: 2514-2520
- Elkins, C. A. and D. C. Savage. 1988. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Appl. Bacteriol. 49: 193-197
- Gopal-Srivastava, R. and P. B. Hylemon. 1990. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29: 1079-1085
- Grill, J. P., F. Schneider, J. Crociani, and J. Ballonge. 1995. Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61: 2577-2582
- Griffin, T. J. and R. Aebersold. 2001. Advances in proteome analysis by mass spectrometry. J. Biol. Chem. 276: 45497-45500 https://doi.org/10.1074/jbc.R100014200
- Gunn, J. S. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2: 907-913 https://doi.org/10.1016/S1286-4579(00)00392-0
- Ha, C. G., J. K. Cho, Y. G. Chai, and K. C. Heo. 2004. Isolation and identification of lactic acid bacteria having superior activity of the bile salts deconjugation. Korean J. Food Sci. Anim. Resour. 24: 164-170
- Han, S.- Y., C.-S. Huh, Y.- T. Ahn, K.-S. Lim, Y.-J. Baek, and D.-H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890
- Han, Y.-J. and T.-S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
- Hancock, W. S., S. L. Wu, and P. Shieh. 2002. The challenges of developing a sound proteomics strategy. Proteomics 2: 352-359 https://doi.org/10.1002/1615-9861(200204)2:4<352::AID-PROT352>3.0.CO;2-U
- Henzel, W. J., C. Watanabe, and J. T. Stults. 2001. Protein identification of the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 14: 931-942 https://doi.org/10.1016/S1044-0305(03)00214-9
- Jones, M. L., H. Chen, W. Ouyang, T. Metz, and S. Prakash. 2004. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 1: 61-69
- Kim, G. B., S. H. Yi, and B. H. Lee. 2004. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. Am. Dairy Sci. Assoc. 87: 258-266 https://doi.org/10.3168/jds.S0022-0302(04)73164-1
- Kleerebezem, M., T. Boekhorst, and R. Kranenburg. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Microbiology 100: 1990-1995
- Lahm, H.- W. and H. Langen. 2000. Mass spectrometry: A tool for the identification of proteins separated by gels. Electrophoresis 21: 2105-2114 https://doi.org/10.1002/1522-2683(20000601)21:11<2105::AID-ELPS2105>3.0.CO;2-M
- Lammli, H. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lee, H. Y., J. H. Park, S. H. Seok, S. A. Cho, M. W. Baek, D. J. Kim, Y. H. Lee, and J. H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol.14: 167-170
- Leer, R. J., H. Christiaens, W. Verstraete, L. Peters, M. Posno, and P. H. Pouwels. 1993. Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: Isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239: 269-272 https://doi.org/10.1007/BF00281627
- Lundeen, S. G. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172: 4171-4177
- Macdonald, I. A., V. D. Bokkenheuser, J. Winter, A. M. McLernon, and E. H. Mosbach. 1983. Degradation of steroids in the human gut. J. Lipid Res. 24: 675-700
- Mann, M., R. C. Hendrickson, and A. Pandery. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473 https://doi.org/10.1146/annurev.biochem.70.1.437
- Matsudaira, P. 1987. Sequence from picomole quantities of proteins eletroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035-10038
- Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405: 837-846 https://doi.org/10.1038/35015709
- Saavedra, L., M. P. Taranto, F. Sesma, and G. F. De Valdez. 2003. Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int. J. Food Microbiol. 88: 241-245 https://doi.org/10.1016/S0168-1605(03)00186-7
- Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535 https://doi.org/10.3168/jds.S0022-0302(99)75506-2
- Taranto, M. P., G. Perdigon, M. Medici, and G. F. De Valdez. 2004. Animal model for in vivo evaluation of cholesterol reduction by lactic acid bacteria. Methods Mol. Biol. 268: 417-422
- Taranto, M. P., M. L. Fernandez Murga, G. Lorca, and G. F. De Valdez. 2003. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95: 86-91 https://doi.org/10.1046/j.1365-2672.2003.01962.x
- Wijaya, A., A. Hermann, H. Abriouel, I. Specht, N. M. Yousif, W. H. Holzapfel, and C. M. Franz. 2004. Cloning of the bile salt hydrolase (BSH) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of BSH genes in food enterococci. J. Food Prot. 67: 2772-2778 https://doi.org/10.4315/0362-028X-67.12.2772
-
Yi, J. H., H.-K. Jang, S.-J. Lee, K.-E. Lee, and S.-G. Choi. 2004. Purification and properties of chitosanase from chitinolytic
$\beta$ -proteobacterium KNU3. J. Microbiol. Biotechnol. 14: 337-343