미세조류의 종류와 농도에 따른 기수산 cyclopoid 요각류 Paracyclopina nana의 섭식

Grazing of Brackish Water Cyclopoid Copepod Paracyclopina nana on Different Microalgae Species and Concentrations

  • Min, Byeong-Hee (Department of Aquaculture, Pukyong National University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Hur, Sung-Bum (Department of Aquaculture, Pukyong National University)
  • 발행 : 2006.11.25

초록

본 연구는 기수산 cyclopoid 요각류인 Paracyclopina nana의 먹이 종류와 농도에 따른 섭식률을 조사하였다. 먹이 공급 24 시간 후 먹이의 종류와 농도에 따른 P. nana의 장내용물 함량과 섭취된 먹이의 양을 색소분석 방법으로 조사하였다. T. suecica는 30 ng chl a/ml, I. galbana와 D. tertiolecta는 40 ng chl a/ml, P. tricornutum는 45 ng chl a/ml 농도로 공급하였을 때 섭취된 먹이의 양과 P. nana의 장내용물 함량이 가장 높았다. T. suecica, I. galbana, P. tricornutum, 그리고 D. tertiolecta에 대한 P. nana 성체 1 개체의 시간당 최대 섭식률은 각 미세조류의 공급 농도가 각각 39.3, 44.7, 44.5와 49.8 ng chl a/ml일 때 각각 0.63, 0.60, 0.41 및 0.52 ng chl a로 나타났다. 따라서 P. nana의 대량배양시 가장 적합한 먹이생물은 공급 농도가 낮으면서도 섭식률이 가장 높은 T. suecica이며, 성체 1 개체당 1일 먹이 공급량은 약 $25{\sim}39$ ng chl a (약 $10{\sim}15{\times}10^4$ cells)가 가장 경제적일 것으로 판단된다.

This study was carried out to investigate grazing of brackish water cyclopoid copepod Paracyclopina nana on four microalgae species (Tetraselmis suecica, Isochrysis galbana, Phaeodactylum tricornutum and Dunaliella tertiolecta) and different food concentrations raging from 5 to 55 ng chl a/ml. The grazing of P. nana was examined by the analysis of decreased number of microalgae and chlorophyll a content in rearing water and pigment content in the gut of P. nana. The maximum content of decreased chlorophyll a and gut pigment in P. nana varied with microalgae species and concentrations. It appeared at the food concentration 30 ng chl a/ml in T. suecica, 40 ng chl a/ml in I. galnaba and D. tertiolecta, and 45 ng chl a/ml in P. tricornutum, respectively. The grazing rate of a P. nana per hour also varied with different microalgae species and concentrations. The maximum grazing rate per hour of P. nana fed T. suecica with 39.3 ng chl a/ml was the highest with 0.63 ng chl a/h, but lowest with 0.52 ng chl a/h. From these results, it can be concluded that T. suecica is the best species among four microalgae species for the mass culture of P. nana and daily optimum food concentration of P. nana is $25{\sim}39$ ng chl a (approximately $10{\sim}15{\times}10^4$ cells).

키워드

참고문헌

  1. Atkinson, A., P. Ward and E. J. Murphy, 1996. Diel periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. J. Plankton Res., 18, 1387-1405 https://doi.org/10.1093/plankt/18.8.1387
  2. Calbet, A. and M. Alcaraz, 1997. Growth and survival rates of early developmental stages of Acartia grani (Copepoda: Calanoida) in relation to food concentration and fluctuations in food supply. Mar. Ecol. Prog. Ser., 147, 181-186 https://doi.org/10.3354/meps147181
  3. Corkett, C. J. and I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods. J. Mar. Biol. Ass. U. K., 50, 161-168 https://doi.org/10.1017/S0025315400000680
  4. Dagg, M. J. and W. E. J. Walser, 1987. Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the the subarctic Pacific Ocean. Limnol. Oceanogr., 32, 178-188 https://doi.org/10.4319/lo.1987.32.1.0178
  5. Dam, H. J. and W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. Exp. Mar. Bio. Ecol., 123, 1-14 https://doi.org/10.1016/0022-0981(88)90105-0
  6. Duncan, D. B., 1955. Multiple-range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  7. Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine plankton copeopd Calanus pacificus. Limnol. Oceanogr., 17, 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  8. Guillard, R. R. L. and J. H. Ryther, 1962. Studies on marine planktonic diatoms. . Cyclotella nana Hustedt and Detonula confervacea (Clece) Gran. Can. J. Microbiol., 3, 229-239
  9. Head, E. J. H., 1988. Copepod feeding behaviour and the measurement of grazing rates in vivo and in vitro. Hydrobiologia, 167/168, 31-41 https://doi.org/10.1007/BF00026292
  10. Head, E. J. H., L. R. Harris and C. Abou Debs, 1985. Effect of daylength and food concentration on in situ diurnal feeding rhythms in arctic copepods. Mar. Ecol. Prog. Ser., 24, 281-288 https://doi.org/10.3354/meps024281
  11. Huntley, M., 1981. Nonselective, nonsaturated feeding by three calanoid copepod species in the Labrador Sea. Limnol. Oceanogr., 26, 831-842 https://doi.org/10.4319/lo.1981.26.5.0831
  12. Knuckey, R. M., G. L. Semmens, R. J. Mayer and M. A. Rimmer, 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effect of algal species and feed concentration on copepod development. Aquaculture, 249, 339-351 https://doi.org/10.1016/j.aquaculture.2005.02.053
  13. Lee, C. S., P. J. O'Bryen and N. H. Marcus, 2005. Copepod in aquaculture. Blackwell Publishing, Iowa, 269 pp
  14. Lee, K. W., 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nana Smirnov. Ph.D. thesis, Kangnung National University, 124 pp
  15. Lee, K. W., H. G. Park, S. M. Lee and H. K. Kang, 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346-353 https://doi.org/10.1016/j.aquaculture.2006.01.015
  16. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr., 12, 343-346 https://doi.org/10.4319/lo.1967.12.2.0343
  17. Mayzaud, P., V. Tirelli, J. M. Bernard and O. Roche-Mayzaud, 1998. The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. J. Mar. Syst., 15, 483- 493 https://doi.org/10.1016/S0924-7963(97)00039-0
  18. Min, B. H., H. G. Park, K. W. Lee and S. B. Hur, 2006. Selection of optimum microalgal species for culture of the brackish water cyclopoid copepod Paracyclopina nana. J. Kor. Fish. Soc., 39 (in Press)
  19. Mullin, M. M. and E. R. Brooks, 1963. Some factors affecting the feeding of marie copepod of the genus Calanus. Limnol. Oceanogr., 8, 239-250 https://doi.org/10.4319/lo.1963.8.2.0239
  20. Nagaraj, M., 1992. Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis. Aquaculture, 103, 65-71 https://doi.org/10.1016/0044-8486(92)90279-T
  21. Ohno, A. and Y. Okamura, 1988. Propagation of the calanoid copepod, Acartia tsuensis, in outdoor tanks. Aquaculture, 187, 85-96 https://doi.org/10.1016/S0044-8486(99)00391-9
  22. Reeve, M. R. and M. A. Walter, 1977. Observations on the existense of lower threshold and upper critical food concentrations for the copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol., 29, 211.221 https://doi.org/10.1016/0022-0981(77)90066-1
  23. Sabatini, M. and T. Kiorboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res., 16, 1329-1351 https://doi.org/10.1093/plankt/16.10.1329
  24. Stottrup, J, G. and N. H. Norsker, 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231- 247 https://doi.org/10.1016/S0044-8486(97)00120-8
  25. Tirelli, V. and P. Mayzaud, 1999. Gut evacuation rates of Antarctic copepods during austral spring. Polar Biol., 21, 197-200 https://doi.org/10.1007/s003000050353