Effect of the Anesthesia MS-222, Ethyl 3-Amino-Benzoate-Methane Sulfonate on Survival and Hatching of Marine Benthic Copepod Tigriopus japonicus

마취제 MS-222, ethyl 3-amino-benzoate-methane sulfonate 가 해양 부착성 요각류 Tigriopus japonicus의 생존과 부화에 미치는 영향

  • Shin, Hyo-Jin (Department of Aquaculture, Pukyung National University) ;
  • Hur, Sung-Bum (Department of Aquaculture, Pukyung National University)
  • Published : 2006.11.25

Abstract

This study was carried out to examine the anesthesia and recovery time of the male and gravid female of marine benthic copepod Tigriopus japonicus at 500, 750, 1,000 ppm of MS-222. We also investigated the survival (%) and the nauplii production of T. japonicus for 14 days, which was anesthetized with MS-222. As the concentration of MS-222 was higher, the anesthesia time of the copepod was shorter and the recovery time was longer. The survival (%) of male T. japonicus was significantly higher than that of the gravid female both in anesthetized and control group. But the survival (%) of the male treated with MS-222 did not show the different survival (%) with the control (0 ppm). In contrast, the survival (%) of the gravid female treated with 750 and 1,000 ppm was significantly lower than that of 500 ppm and control. With regard to hatching, as the concentrations was higher, the number of hatching and total nauplii were lower and interval of hatching was longer. However, the gravid female treated with 500 ppm did not show the significant difference with control. We suggest that 500 ppm of MS-222 is the suitable concentration in isolation of T. japonicus.

살아 움직이는 요각류를 모세관으로 분리 할 때 마취제(MS-222)의 이용은 편리할 뿐만 아니라 분리 후 요각류의 생존율을 높일 수 있다. 본 실험은 다양한 종류와 크기의 요각류를 효율적으로 분리하기 위하여 부착성 요각류인 Tigriopus japonicus 수컷과 포란한 암컷을 대상으로 MS-222의 농도별(500, 750, 1,000 ppm) 마취시간과 회복시간 그리고 마취 후 분리된 개체들의 생존율 및 포란한 암컷의 nauplius 생산력을 비교 조사하였다. 그 결과는 다음과 같다. MS-222의 농도가 높아질수록 마취시간은 짧고 회복시간은 길게 나타났다. MS-222로 마취 후 분리한 T. japonicus의 14일간의 생존율에서 수컷은 포란한 암컷 실험구에 비해 유의적으로 높게 나타났으나 수컷 대조구와 유의적 차를 보이지 않았다. 반대로 포란한 암컷의 경우는, 750 ppm, 1,000 ppm에서는 생존율이 대조구나 500 ppm 에서보다 유의적으로 낮았다. MS-222 농도가 높을수록 T. japonicus의 부화횟수와 부화량은 적고, 부화주기는 길었다. 그러나 500 ppm 실험구는 대조구와 유의적인 차이가 없어 T. japonicus의 분리 시 적정 농도는 500 ppm 정도로 판단된다. 이러한 결과는 차후 다양한 크기의 요각류를 분리할 때 MS-222의 적정 농도를 파악하는데 유익한 기초 자료가 될 것이다.

Keywords

References

  1. Barata, C., A. Calbet, E. Saiz, L. Oritz and J. M. Bayona, 2005. Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. Environ. Toxicol. Chem., 24, 2992-2999 https://doi.org/10.1897/05-189R.1
  2. Breteler, K., N. Schogt and J. Van Der Meer, 1994. The duration of copepod life stages estimated from stage-frequency data. J. Plankton Res., 16, 1039-1057 https://doi.org/10.1093/plankt/16.8.1039
  3. Evjemo, J. O., K. I. Reitan and Y. Olsen, 2003. Copepods as live food organism in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227, 191-210 https://doi.org/10.1016/S0044-8486(03)00503-9
  4. Gapasin, R. S. J. and M. N. Duray, 2001. Effects of DHAenriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193, 49-63 https://doi.org/10.1016/S0044-8486(00)00469-5
  5. Guerin, J. P., P. Kerambrun and D. Riviere, 1982. Short and longterm effects of a narcotic on some enzymatic activities of the harpacticoid copepod Tisbe holothuriae. Mar. Biol., 68, 217-221 https://doi.org/10.1007/BF00397609
  6. Guillard, R. R. L. and J. H. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve). Gran. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  7. Knusten, T., W. Melle and L. Calise, 2001. Determining the mass density of marine copepods and their eggs with a critical focus on some of the previously used methods. J. Plankton Res., 23, 859-873 https://doi.org/10.1093/plankt/23.8.859
  8. Lee, K. W., H. G. Park, S. M. Lee and H. K. Kang, 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346-353 https://doi.org/10.1016/j.aquaculture.2006.01.015
  9. Lubzens, E., A. Tandler and G. Minkoff, 1989. Rotifers as food in aquaculture. Hydrobiologia., 186-187, 387-400
  10. McKinnon, A. D., S. Duggan, P. D. Nichols, M. A. Rimmer, G. Semmens and B, Robino, 2003. The potential of tropical paracalanoid copepods as live feeds in aquaculture. Aquaculture, 223, 89-106 https://doi.org/10.1016/S0044-8486(03)00161-3
  11. Marcus, N. H. and K. Taulbee, 1992. Potential effects of a resuspension event on the vertical distribution of copepod eggs in the sea bed: a laboratory simulation. Mar. Biol., 114, 249-251 https://doi.org/10.1007/BF00349526
  12. Mulin, M. M., 1979. Differential predation by the carnivorous marine copepod, Tortanus discaudatus. Limnol. Oceanogr., 24, 774-777 https://doi.org/10.4319/lo.1979.24.4.0774
  13. Ohno, A. and Y. Okamura, 1988. Propagation of the calanoid copepod, Acartia tsuensis, in outdoor tanks. Aquaculture, 70, 39-51 https://doi.org/10.1016/0044-8486(88)90005-1
  14. Park, H. G. and S. B. Hur, 1993. Optimum culture environment of the benthic copepod, Tigriopus japonicus. J. Aquaculture, 6, 149-159
  15. Park, H. G., S. B. Hur and C. W. Kim, 1998. Culturing method and dietary value of benthic copepod, Tigriopus japonicus. J. Aquaculture, 11, 261-269
  16. Payne, M. F. and R. J. Rippingale, 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 187, 85-96 https://doi.org/10.1016/S0044-8486(99)00391-9
  17. Payne, M. F. and R. J. Rippingale, 2001. Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture, 201, 329-342 https://doi.org/10.1016/S0044-8486(01)00608-1
  18. Phels, R. P., G. S. Sumiarsa, E. E. Lipman, H. P. Lan, K. K. Moss and A. D. Davis, 2005. Intensive and extensive production techniques to provide copepod nauplii for feeding larval red snapper Lutjanus campechanus. (in) C. S. Lee, P. J. O'Bryen and N. H. Marcus (ed.), Copepod in Aquaculture. Blackwell Publishing, Iowa, pp. 151.168
  19. Schipp, G. R., M. P. B. Jerome and J. M. Andria, 1999. A method for hatchery culture of tropical calanoid copepods, Acartia spp.. Aquaculture, 174, 81-88 https://doi.org/10.1016/S0044-8486(98)00508-0
  20. Stottrup, J. G., K. Richardson, E. Kirkegaard and N. J. Pihl, 1986. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture, 52, 87-96 https://doi.org/10.1016/0044-8486(86)90028-1
  21. Stottrup, J. G. and N. H. Norsker, 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231.247 https://doi.org/10.1016/S0044-8486(97)00120-8
  22. Sun, B. and J. W. Fleeger, 1995. Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 136, 313-321 https://doi.org/10.1016/0044-8486(95)01064-5
  23. Theilacker, G. H. and A. S. Kimball, 1984. Comparative quality of rotifers and copepods as foods for larval fishes. California Cooperative Ocean. Fish. Invest. Rep., 25, 80-86
  24. Toledo, J. D., M. S. Golez and A. Ohno, 2005. Studies of the use of copepods in the semi-intensive seed production of grouper Epinephelus coioides. (in) C. S. Lee, P. J. O'Bryen and N. H. Marcus (ed.), Copepod in Aquaculture. Blackwell Publishing, Iowa, pp. 169-182
  25. Trujillo-Ortiz, A., 1986. Life cycle of the calanoid copepod Acartia californiensis Trinast reared under laboratory conditions. California Cooperative Ocean. Fish. Invest. Rep., 27, 188-204
  26. Van Duren, L. A., E. J. Stamhuis and J. J. Videler, 2002. Copepod feeding currents: flow patterns, filtration rates and energetics. J. Exp. Biol., 206, 255-267 https://doi.org/10.1242/jeb.00078
  27. Wagner, M. M., R. G. Campbell, C. A. Boudreau and E. G. Durbin, 2001. Nucleic acids and growth of Calanus finmarchicus in the laboratory under different food and temperature conditions. Mar. Ecol. Prog. Ser., 221, 185-197 https://doi.org/10.3354/meps221185