Effects of Protein and Lipid Levels of Extruded Pellet on Growth and Body Composition of Flounder, Paralichthys olivaceus

건조 pellet 사료의 단백질 및 지질 함량이 넙치의 성장 및 체성분에 미치는 영향

  • Choi, Jin (Faculty of Marine Bioscience & Technology Kangnung National University) ;
  • Seo, Joo-Young (Faculty of Marine Bioscience & Technology Kangnung National University) ;
  • Lee, Choong-Ryul (Faculty of Marine Bioscience & Technology Kangnung National University) ;
  • Kim, Kyoung-Duck (Aquafeed Research Center, National Fisheries Research and Development Institute) ;
  • Kang, Yong-Jin (Aquafeed Research Center, National Fisheries Research and Development Institute) ;
  • Lee, Sang-Min (Faculty of Marine Bioscience & Technology Kangnung National University)
  • 최진 (강릉대학교 해양생명공학부) ;
  • 서주영 (강릉대학교 해양생명공학부) ;
  • 이충열 (강릉대학교 해양생명공학부) ;
  • 김경덕 (국립수산과학원 양식사료연구센터) ;
  • 강용진 (국립수산과학원 양식사료연구센터) ;
  • 이상민 (강릉대학교 해양생명공학부)
  • Published : 2006.11.25

Abstract

This study was conducted to investigate the effects of protein and lipid levels of extruded pellet on growth and body composition of juvenile flounder. Six extruded dry pellets were formulated to contain two protein levels (50 and 55%) and three lipid levels (8, 12 and 15%). Triplicate groups of fish (initial mean weight 21 g) were hand-fed to apparent satiation two times a day for 9 weeks. Survival, weight gain and daily feed intake were not significantly affected by dietary protein and lipid levels. Feed efficiency and protein efficiency ratio were significantly (P<0.001) affected by dietary lipid level, and tended to increase as dietary lipid level increased. Feed efficiency ratio of fish fed the 55% protein diet with 15% lipid was not significantly different from that of fish fed the 50% protein diet with 15% lipid, but significantly (P<0.05) higher than that of fish fed the other diets. Protein efficiency ratio of fish fed the 55% protein diet with 15% lipid was significantly (P<0.05) higher than that of fish fed the 50% protein diet with 8% lipid and 55% protein diets with $8{\sim}12%$ lipids. The contents of moisture, crude protein and lipid in the liver was significantly (P<0.01) affected by dietary lipid level. The results of this study indicate that an increase in lipid level at 50-55% protein in extruded pellet can improve feed efficiency for juvenile flounder.

넙치 치어용 건조사료의 적정 단백질 및 지질 함량을 조사하기 위하여 사료의 단백질 함량을 50% 및 55%로 조절하고, 각 단백질 함량에 지질 함량을 8%, 12% 및 15%로 조절하여 6종류의 실험 EP 사료를 제조하였다. 21 g의 넙치 치어를 300 L 수조에 3반복으로 무작위로 수용하여, 평균 수온 $20\;^{\circ}C$에서 1일 2회 만복으로 EP 사료를 9주간 공급하였다. 사육실험 결과, 생존율, 증중률 및 일일사료섭취율은 사료의 단백질 및 지질 함량에 영향을 받지 않았다(P>0.05). 사료효율과 단백질효율은 사료의 지질 함량에 유의하게 영향을 받았으며(P<0.001), 사료 지질 함량이 증가함에 따라 증가하는 경향을 보였다. 사료효율은 단백질 50%에 지질 15% 공급구와 단백질 55%에 지질 15% 공급구 사이에 유의차는 없었지만, 다른 실험사료 공급구보다 높았다(P<0.05). 단백질효율도 사료효율과 유사한 경향을 보였고, 단백질 55%에 지질 15% 공급한 실험구가 단백질 50%에 지질 8%, 단백질 55%에 지질 8% 및 지질 12% 공급구보다 높았다(P<0.05). 어체 간의 수분, 단백질 및 지질 함량은 사료의 지질 함량에 유의하게 영향을 받았다(P<0.01). 근육의 일반성분은 실험구간에 유의차가 없었다(P>0.05). 이상의 결과로부터, 본 실험에 적용된 사육조건에서 넙치 치어용 EP 사료의 단백질 함량이 $50{\sim}55%$일 때, 지질 함량을 높여주는 것이 사료이용 효율을 개선시키는데 도움이 될 것으로 판단된다.

Keywords

References

  1. Anderson, J. S. and S. Robert, 2001. Effect of extruder moisture and dryer processing temperature on vitamin C and E and astaxanthin stability, Aquaculture, 207, 137-149 https://doi.org/10.1016/S0044-8486(01)00787-6
  2. AOAC, 1990. Official Methods of Analysis. 15th edition. Association of Official Analytical Chemists. Arlington, Virginia. 1298 pp
  3. Carpenter, K. J. and V. H. Booth, 1973. Damage to lysine in food processing: its measurement and its significance. Nutr. Abstr. Rev., 43, 424-451
  4. Catacutan, M. R. and T. M. T, Coloso, 1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture, 131, 125-133 https://doi.org/10.1016/0044-8486(94)00358-U
  5. Cho, C.-Y. and S. J. Kaushik, 1990. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Diet., 61, 132-172
  6. Cho, S.-H., S.-M. Lee and J.-H. Lee, 2005. Effects of the extruded pellets and raw fish-based moist pellet on growth and body composition of flounder Paralichthys olivaceus L. for 10 months. J. Aquacult., 18, 60-65
  7. De Silva, S. S., R. M. Gunasekera and K. F. Shim, 1991. Interactions of varying dietary protein and lipid levels in young red tilapia: evidence of protein spating. Aquaculture, 95, 305-318 https://doi.org/10.1016/0044-8486(91)90096-P
  8. Duncan, D. B., 1955. Multiple-range and multiple Ftests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  9. Evans, R. J. and H. A. Butts, 1951. Heat inactivation of the basic amino acids and tryptophan. J. food Res., 16, 415-421 https://doi.org/10.1111/j.1365-2621.1951.tb17398.x
  10. Ferket, P. R., 1991. Technological advances could make extrusion an economically feasible alternative to pelleting. Feedstuffs, 63, 1
  11. Haper, J. M., 1981. Extrusion of Foods. (Vol. I). Boca Raton, Fl: CRC Press
  12. Hillestad, M. and F. T. Johnsen, 1994. High-energy/low-protein diets for Atlantic salmon: Effects on growth, nutrient retention and slaughter quality. Aquaculture, 124, 109-116 https://doi.org/10.1016/0044-8486(94)90366-2
  13. Kim, Y.-U., 2005. Policy of artificial feed supply for marine fish culture in Korea. International Symposium on the Present Status of Nutrition Research and the Future of Aquaculture Feed in Korea. NFRDI, Busan, Korea, 12 August, 2005. pp. 11-16
  14. Kim, K.-D. and S.-M. Lee, 2004. Requirement of dietary n-3 highly unsaturated fatty acids for juvenile flounder (Paralichthys olivaceus). Aquaculture, 229, 315-323 https://doi.org/10.1016/S0044-8486(03)00356-9
  15. Kim, G.-U., H.-S. Jang, J.-Y. Seo and S.-M.. Lee, 2005. Effect of feeding frequency of extruded pellet on growth and body composition of juvenile flounder, Paralichthys olivaceus during the winter season. J. Aquacult., 18, 31-36
  16. Lee, S.-M.. and K.-D. Kim, 2005. Effect of various levels of lipid exchanged with dextrin at different protein level in diet on growth and body composition of juvenile flounder Paralichthys olivaceus. Aqua. Nut., 11, 435-442 https://doi.org/10.1111/j.1365-2095.2005.00372.x
  17. Lee, S.-M., S.H. Cho and K.D. Kim, 2000. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder (Paralichthys olivaceus). J. World Aquac. Soc., 31, 306-315
  18. Lee, S.-M., K.-D. Kim, and S.P. Lall, 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture, 221, 427-438 https://doi.org/10.1016/S0044-8486(03)00061-9
  19. Lee, S.-M., C.-H. Seo and Y.-S. Cho, 1999. Growth of the juvenile olive flounder (Paralichthys olivaceus) fed the diets at different feeding frequencies. J. Kor. Fish. Soc., 32, 18-21
  20. Lee, S.-M., C.-S. Park and I.-C. Bang, 2002. Dietary protein requirement of young Japanese flounder Paralichthys olivaceus fed isocaloric diets. Fish. Sci., 68, 158-164 https://doi.org/10.1046/j.1444-2906.2002.00402.x
  21. Lee, S.-M., J.-Y. Seo, Y.-W. Lee., K.-D. Kim., J. H. Lee and H. S. Jang, 2005. Evaluation of experimental extruded Pellet, commercial pellet and raw fish-based moist pellet for growing flounder, Paralichthys olivaceus. J. Aquacult., 18, 287-292
  22. Lie, O., E. Lied and G. Lambertsen, 1988. Feed optimization in Atlantic cod Gadus morhua:fat versus protein content in the feed. Aquaculture, 69, 333-341 https://doi.org/10.1016/0044-8486(88)90340-7
  23. Lovell, R.T., 1989 Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York, USA. p. 260
  24. McGoogan, B. B. and D. M. Gatlin, 1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus. I. Effects of dietary protein and energy levels. Aquaculture, 178, 333-348 https://doi.org/10.1016/S0044-8486(99)00137-4
  25. Okelo, P. O., D. D. Wagner, L. E. Carr, R. W. Wheaton, L. W. Douglass and S. W. Joseph, 2006. Optimization of extrusion conditions for elimination of mesophilic bacteria during thermal processing of animal feed mash. Ani. Feed Scie. Tech., 129, 116-137 https://doi.org/10.1016/j.anifeedsci.2005.12.011
  26. Peisker, M., 1994. Influence of expansion on feed components. Feed Mix, 2, 26-31
  27. Peres, H. and A. Oliva-Teles, 1999. Effects of dietary lipid level on growth performance and feed utilization by European sea bass juveniles Dicentrarchus labrax. Aquaculture, 179, 325- 334 https://doi.org/10.1016/S0044-8486(99)00168-4
  28. Seo, J-Y., J.-H. Lee, G.-H. Kim and S.-M. Lee, 2005. Effect of extruded and moist pellets at different feeding rate on growth and body composition of juvenile flounder, Paralichthys olivaceus. J. Aquacult., 18, 26-30
  29. Sheridan, M. A., 1998. Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol., 90, 679-690
  30. Tayeb, J., B. Vergnes and C. Barres, 1992. An improved thermal model for the solid conveying section of a twin-crew cooker. J. Food Eng., 15, 167-186 https://doi.org/10.1016/0260-8774(92)90049-C