Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas

Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정

  • Park, Chang-Ki (School of Advanced Materials Science & Engineering and Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Lee, Chun-Hee (School of Advanced Materials Science & Engineering and Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Kim, Hui-Tae (School of Advanced Materials Science & Engineering and Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Lee, Nae-Eung (School of Advanced Materials Science & Engineering and Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
  • 박창기 (성균관대학교 신소재공학부) ;
  • 이춘희 (성균관대학교 신소재공학부) ;
  • 김희대 (성균관대학교 신소재공학부) ;
  • 이내응 (성균관대학교 신소재공학부)
  • Published : 2006.06.30

Abstract

Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

Keywords

References

  1. D. H. Kim, C. H. Lee, S. H. Cho, N.-E. Lee, J. Vac. Sci. Technol., B 23 (2005) 2203 https://doi.org/10.1116/1.2009770
  2. J. Kim, Y. S. Chae, W. S. Lee, J. W. Shon, C. J. Kang, W. S. Han, J. T. Moon, J. Vac. Sci. Technol. B 21 (2003) 790 https://doi.org/10.1116/1.1563626
  3. V. Georgieva, A. Bogaerts, R. Gijbels, J. Appl. Phys., 94 (2003) 3748 https://doi.org/10.1063/1.1603348
  4. P. C. Boyle. A. R. Ellingboo, M. M. Turner, Plasma Sources Sci. Technol., 13 (2004) 493 https://doi.org/10.1088/0963-0252/13/3/016
  5. P. C. Boyle, A. R. Ellingboe, M. M. Turner, J. Phys. D: Appl. Phys., 37 (2004) 697 https://doi.org/10.1088/0022-3727/37/5/008
  6. H. C. Kim, J. K. Lee, Phys. Rev. Lett., 93 (2004) 085003 https://doi.org/10.1103/PhysRevLett.93.085003
  7. D. Briggs, M. P. Seah. Practical Surface Analysis. 2nd ed, Wiley. New York, 1 (1990) 135
  8. T. E. F. M. Standaert, C. Hedlund, E. A. Joseph, G. S. Ochrlein, J. Vac. Sci. Technol., A 22 (2004) 53 https://doi.org/10.1116/1.1626642
  9. M. Sehacpkens, T. E. F. M. Standacn, N. R. Ruefer. P. G. M. Sebel, G. S. Ochrlein, J. Vac. Sci. Technol., A 17 (1999) 26 https://doi.org/10.1116/1.582108
  10. Y. Zhang, G. S. Ochrlein, F. H. Bell, J. Vac. Sci. Technol., A 14 (1996) 2127 https://doi.org/10.1116/1.580091
  11. M. Matsui, T. Tatsumi, M. Sckine, J. Vac. Sci. Technol., A 19 (2001) 1282 https://doi.org/10.1116/1.1383064