The Effects of Negative Carbon Ion Beam Energy on the Properties of DLC Film

  • Choi, Bi-Kong (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Dae-Han (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Yu-Sung (School of Materials Science and Engineering, University of Ulsan) ;
  • Jang, Ho-Sung (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jin-Hee (School of Materials Science and Engineering, University of Ulsan) ;
  • Yoon, Ki-Sung (School of Materials Science and Engineering, University of Ulsan) ;
  • Chun, Hui-Gon (School of Materials Science and Engineering, University of Ulsan) ;
  • You, Young-Zoo (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
  • 발행 : 2006.06.30

초록

The effects of negative carbon ion beam energy on the bonding configuration, hardness and surface roughness of DLC film prepared by a direct metal ion beam deposition system were investigated. As the negative carbon ion beam energy increased from 25 to 150 eV, the $sp^3$ fraction of DLC films was increased from 32 to 67%, while the surface roughness was decreased. The films prepared at 150 eV showed the more flat surface morphology of the film than that of the film prepared under another ion beam energy conditions. Surface roughness of DLC film varied from 0.62 to 0.22 nm with depositing carbon ion beam energy. Surface nano-hardness increased from 12 to 57 Gpa when increasing the negative carbon ion beam energy from 25 to 150 eV, and then decreased when increasing the ion beam energy from 150 to 200 eV.

키워드

참고문헌

  1. J. Kleps, A. Angelescu, Solid State Electronic, 45 (2001) 997 https://doi.org/10.1016/S0038-1101(01)00148-4
  2. M. Schlatter, Diamond Relat. Mater., 11 (2002) 1781 https://doi.org/10.1016/S0925-9635(02)00166-8
  3. H. Hanyu, S, Kamiya, Surf. Coat. Technol., 200 (2005) 1137 https://doi.org/10.1016/j.surfcoat.2005.02.022
  4. L. Xia. M. Sun, J. Liao, Diamond Relat Mater., 14 (2005) 42 https://doi.org/10.1016/j.diamond.2004.06.031
  5. H. Ohno, S. Nagai, D. Armour, Nucl. Instrum. Methods Phys. B ; Beam Interact, Maler. Atoms, 148 (1999) 673 https://doi.org/10.1016/S0168-583X(98)00874-X
  6. G. Thorwarth. C. Hammerl. Surf. Coat, Technol., 193 (2005) 206 https://doi.org/10.1016/j.surfcoat.2004.07.061
  7. Y. Kwo, S. Kim, J. Vac. Sci. Technol., A15 (1997) 2750
  8. G. D. Alton, Y. Liu, H. Zaim, S. Murray, Nucl. Instrum. Methods Phys. B; Beam Interact. Mater. Atoms, 211 (2003) 425 https://doi.org/10.1016/S0168-583X(03)01365-X
  9. D. Kim, S. Kim, Thin Solid Films, 408 (2002) 218 https://doi.org/10.1016/S0040-6090(02)00148-7
  10. D. Kim, S. Kim, J. Vac. Sci. Technol., A20 (2002) 1314
  11. A. Savitsky, M. Golay, Anal. Chem. 36 (1964) 1627 https://doi.org/10.1021/ac60214a047
  12. D. Shirley, Phys. Rev., B5 (1972) 4709
  13. D. W. Han, Y. H. Kim, Thin Solid films, 355 (1999) 199 https://doi.org/10.1016/S0040-6090(99)00517-9
  14. Y. Lifshitz, G. Lempert, E. Grossman, Phys. Rev. Lett., 72 (1994) 2753 https://doi.org/10.1103/PhysRevLett.72.2753
  15. Y. Lifshitz, S. Kasi, J. Rabalais, W. Eckstein, Phys. Rev. B41 (1990) 10468
  16. H. Hofsaess, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Appl. Phys., A66 (1998) 153