DOI QR코드

DOI QR Code

Temperature Characteristics of the Modified GAC by Microwave Irradiation and Benzene Adsorption

마이크로파 조사에 따른 개질화 활성탄의 온도특성 및 벤젠흡착

  • Choi Sung-Woo (Department of Environmental Science and Engineering, Keimyung University) ;
  • Kim Yoon-Kab (Department of Fire and Environmental Safety, Keimyung College)
  • 최성우 (계명대학교 환경과학과) ;
  • 김윤갑 (계명문화대학 소방환경안전과)
  • Published : 2006.06.01

Abstract

The purposes of this paper were to monitor the temperature rising courses and spark discharge of the modified granular activated carbon (GAC) by microwave (MW) irradiation and to evaluate absorption of benzene. The GAC coated on $SiO_2$, boron, talc, ferrite was named as the modified GAC. Thermal and spark discharge measurement of virgin GAC and modifed GAC has been carried out using a MW device operating at 2450 MHz under various energy conditions. The results of this paper as follows. First, the modified GAC is more efficient than the virgin GAC in temperature control. Temperature gradient of the modified GAC is more lower than that of virgin GAC. The temperature gradient of GAC was observed in the following order : virgin GAC, Mn-Zn ferrite/GAC, Ni-Zn ferrite,/GAC, $SiO_2/GAC$, Boron/GAC, Talc/GAC. Second, the spark discharge of the modified GAC was diminished, compared with that of virgin GAC. Because of its excellent electrical insulating properties, the coating material prevents the spark discharge. Finally, the benzene adsorption capacity of the modified GAC decreased due to diminishing of adsorption site by the coating material. Considering the temperature gradient and spark discharge of GAC, the GAC coated $SiO_2$ would be appropriate absorbent under irradiation of MW.

Keywords

References

  1. Jenkin, M. E. and G. D. Hayman, 1999, Photochemical ozone creation potentials for oxygenated volatile oranic compounds: sensitivity to variations in kinetic and mechanistic parameters, Atmos. Environ., 33, 1275-1293 https://doi.org/10.1016/S1352-2310(98)00261-1
  2. Chang, Y. C. and C. T. Carlisle, 2001, Microwave process for volatile organic compound abatement, J. Air Waste Manage. Assoc., 51, 1628-1641 https://doi.org/10.1080/10473289.2001.10464389
  3. 문승일, 2003, VOCs 제거에 따른 플라즈마/촉매 시너지효과에 관한 연구, 대한환경공학회지, 25(7), 810-815
  4. Mats, L. and H. Anders, 2001, Microwave-assisted high-speed chemistry: a new technique in drug discovery, Drug Discov Today, 6(8), 406-416 https://doi.org/10.1016/S1359-6446(01)01735-4
  5. Haque, K. E., 1999, Microwave energy for mineral treatment processes-a bried review, International Journal of Mineral Processing, 57, 1-24 https://doi.org/10.1016/S0301-7516(99)00009-5
  6. Ania, C. O., J. A Menendez, J. B. Parra and J. J. Pis, 2004, Microwave-induced regeneration of activated carbons polluted with phenol, A comparison with conventional thermal regeneration, Carbon, 42, 1383-1387 https://doi.org/10.1016/j.carbon.2004.01.010
  7. Liu, X., X. Quan, L. Bo, S. Chen and Y. Zhao, 2004, Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation, Carbon, 42, 415-422 https://doi.org/10.1016/j.carbon.2003.12.032
  8. Quan, X., X. Liu, L. Bo, S. Chen, Y. Zhao and X. Cui, 2004, Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation, Water Research, 38, 4484-4490 https://doi.org/10.1016/j.watres.2004.08.031
  9. Ludlow, P. C., 2001, Microwave induced pyrolysis of plastic wastes, Ind. Eng. Chem. Res., 40, 4749-4756 https://doi.org/10.1021/ie010202j
  10. Gan, Q., 2000, A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water, Waste Manage, 20, 695-701 https://doi.org/10.1016/S0956-053X(00)00036-2
  11. Abramovitch, R. A, B. Z. Huang, D. A Abramovitch and J. Song, 1999, In situ decomposition of PCBs in soil using microwave energy, Chemosphere, 38, 2227-2236 https://doi.org/10.1016/S0045-6535(98)00441-X
  12. Abramovitch, R. A, B. Z. Huang, D. A Abramovitch and J. Song, 1999, In situ decomposition of PAHs in soil and desorption of orgainc solvents using microwave energy, Chemosphere, 39, 81-87 https://doi.org/10.1016/S0045-6535(98)00590-6
  13. Jou, C. J. G., 1998, Application of activated carbon in a microwave radiation field to treat trichloroethylene, Carbon, 36(11), 1643-1648 https://doi.org/10.1016/S0008-6223(98)00158-4
  14. Van, W. E. J., S. M. Bradshaw and J. B. D. Swardt, 1998, The dependence of microwave regeneration of activated carbon on time and temperature, J. Microwave Power Electromagn. Energy, 33(3), 151-157
  15. Jou, C. J. G., 1998, Application of granulated actibated carbon packed-bed reactor in microwave radiation field to treat BTX, Chernesphere, 37(4), 685-698
  16. Hao, X. P., D. L. Cui, G. X. Shi, Y. Q. Yin, X. G. Xu, M. H. Iiang, X. W. Xu and Y. P. Li, 2001, Low temperature benzene thermal systhesis and characterization of boron nitride nanocrystals, Materials Letters, 51, 509-513 https://doi.org/10.1016/S0167-577X(01)00344-5
  17. Bathen, D., 2003, Physical waves in adsorption technology an overview, Separation and Purification Technology, 33, 163-177 https://doi.org/10.1016/S1383-5866(03)00004-2
  18. Pardavi, H. M., 2000, Microwave applications of soft ferrites, Journal of Magnetism and Magnetic Materials, 215-216, 171-183
  19. Abdeen, A. M., 1998, Electric conduction in Ni-Zn ferrites, Journal of Magnetism and Magnetic Materials, 185, 199-206 https://doi.org/10.1016/S0304-8853(97)01144-X
  20. Dias, A. and R. L. Moreira, 1999, Chemical, mechanical and dielectric properties after sintering of hydrothermal nickel-zinc ferrites, Materials Letters, 39, 69-76 https://doi.org/10.1016/S0167-577X(98)00219-5
  21. El, S. M., 1997, DC electrical properties of Zn-Ni ferrites, Journal of Magnetism and Magnetic Materials, 172, 1888-192
  22. Mangalaraja, R. V., S. Ananthakumar, P. Manohar, F. D. Gnanam and M. Awano, 2004, Microwave-flash combustion synthesis of $Ni_{0.8}Zn_{0.2}Fe_{2}O_{4}$ and its dielectric characterization, Materials Letters, 58, 1593-1596 https://doi.org/10.1016/j.matlet.2003.10.032
  23. Sorescu, M., L. Diamandescu, R. Peelamedu, R. Roy and P. Yadoji, 2004, Strutural and magnetic properties of NiZn ferrites prepared by microwave sintering, Journal of Magnetism and Magnetic Materials, 279, 195-201 https://doi.org/10.1016/j.jmmm.2004.01.079
  24. Vijaya, K. K. and D. Ravinder, 2001, Electrical transport properties of erbium substituted NiZn ferrites, International Journal of Inorganic Materials, 3, 661-666 https://doi.org/10.1016/S1466-6049(01)00194-5
  25. Ravinder, D. and B. R. Kumar, 2003, Electrical conductivity of cerium substituted Mn- Zn ferrites, Materials Letters, 57, 1738-1742 https://doi.org/10.1016/S0167-577X(02)01060-1
  26. Ravinder, D. and K. K. Vijaya, 2001, Thermoelectric power studies of erbium substituted Mn-Zn ferrites, Materials Letters, 49, 57-62 https://doi.org/10.1016/S0167-577X(00)00342-6