DOI QR코드

DOI QR Code

System Parameter Estimation and PID Controller Tuning Based on PPGAs

PPGA 기반의 시스템 파라미터 추정과 PID 제어기 동조

  • 신명호 (부양전자산업(주)연구소) ;
  • 김민정 (한국해양대학교 대학원 제어계측공학과) ;
  • 이윤형 (한국해양대학교 대학원 메카트로닉스공학부) ;
  • 소명옥 (한국해양대학교 선박전자기계공학부) ;
  • 진강규 (한국해양대학교 IT 공학부)
  • Published : 2006.07.01

Abstract

In this paper, a methodology for estimating the model parameters of a discrete-time system and tuning a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems regarding parameter estimation and controller tuning, pseudo-parallel genetic algorithms(PPGAs) are used. The parameters of a discrete-time system are estimated using both the model adjustment technique and a PPGA. The digital PID controller is described by the pulse transfer function and then its three gains are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

Keywords

References

  1. Y. Nozaka, 'Trend of new control theory application in industrial process control(survey),' Proc. IFAC 12th Triennial World Cong., vol. 4, pp. 215-218, 1993
  2. M. Morari and E. Zafiriou, 'Robust process control,' Prentice-Hall, Englewood Cliffs, NJ, 1989
  3. S. W. Sung and I. B. Lee, 'PID Controllers and automatic tuning,' A-Jin Publishing Co., Korea, 1999
  4. J. G. Ziegler and N. B. Nichols, 'Optimum setting for Pill controllers,' Trans. ASME, vol. 64, pp. 759-768, 1942
  5. G. H. Cohen and G. A. Coon, 'Theoretical considerations of retarded control,' Trans. ASME, vol. 75, pp. 827-834, 1953
  6. K. J. Astrom and T. Hagglund, 'Automatic tuning of simple regulators with specifications on phase and amplitude margins,' Automatica, vol. 20, pp. 645-651, 1984 https://doi.org/10.1016/0005-1098(84)90014-1
  7. T. Yamamoto et al., 'Intelligent tuning Pill controllers,' Proc. IEEE Int. Canf. on SMC, vol. 5, pp. 2610-2615, 1995
  8. E. H. Bristol, 'Pattern recogrution: an alternative to parameter identification in adaptive control,' Automatica, vol. 13, pp. 197-202, 1977 https://doi.org/10.1016/0005-1098(77)90046-2
  9. P. Wang and D. P. Kwok, 'Optimal design of PID process controllers based on genetic algorithms,' Proc. 12th Triennial World Congress of IFAC, Sydney, Australia, vol. 4, pp. 193-197, 1993
  10. 김도응,진강규, 'RCGA를 이용한 PiD 제어기의 모델 기반 동조규칙,' 제어 자동화 시스템공학 논문지,제8권, 제12호, pp. 1056-1060, 2002 https://doi.org/10.5302/J.ICROS.2002.8.12.1056
  11. A. J. Chipperfield, P. J. Fleming, and A. Y. Zomaya, Parallel genetic algorithms, parallel & distributed computing handbook, McGraw-Hill, 1996
  12. R. V. Monopoli, 'Model reference adaptive control with an augmented error sigral,' IEEE Trans. on Automatic Control, vol. AC-19, no. 5, pp. 474-484, 1974
  13. I. D. Landau, 'System identification and control design,' Prentice-Hall International Inc., 1988
  14. 진강규,유전알고리즘과 그 응용,교우사,2000
  15. R. Iserrnann, 'Digital control systems,' Springer-Verlag, NJ, 1977