• Title/Summary/Keyword: pseudo-parallel genetic algorithm

Search Result 3, Processing Time 0.021 seconds

PPGA for the Optimal Load Planning of Containers (컨테이너의 최적 적하계획을 위한 PPGA)

  • Kim, Kil-Tae;Cho, Seok-Jae;Jin, Gang-Gyoo;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.517-523
    • /
    • 2004
  • The container load planning is one of key factors for efficient operations of handling equipments at container ports. When the number of containers are large, finding a good solution using the conventional genetic algorithm is very time consuming. To obtain a good solution with considerably small effort, in this paper a pseudo-parallel genetic algorithm(PPGA) based on both the migration model and the ring topology is developed The performance of the PPGA is demonstrated through a test problem of determining the optimal loading sequence of the containers.

PPGA-Based Optimal Tuning of a Digital PID Controller (PPGA에 기초한 디지털 PID 제어기의 최적 동조)

  • Shin, Myung-Ho;Kim, Min-Jeong;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.314-320
    • /
    • 2005
  • In this paper, a methodology for estimating the parameters of a discrete-time system and designing a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems occurring regarding parameter estimation and controller design, a pseudo parallel genetic algorithm (PPGA) is used. The parameters of a discrete-time system are estimated using both the model technique and a PPGA. The digital PID controller is described by the pulse transfer function and its parameters are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

  • PDF

System Parameter Estimation and PID Controller Tuning Based on PPGAs (PPGA 기반의 시스템 파라미터 추정과 PID 제어기 동조)

  • Shin Myung-Ho;Kim Min-Jeong;Lee Yun-Hyung;So Myung-Ok;Jin Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, a methodology for estimating the model parameters of a discrete-time system and tuning a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems regarding parameter estimation and controller tuning, pseudo-parallel genetic algorithms(PPGAs) are used. The parameters of a discrete-time system are estimated using both the model adjustment technique and a PPGA. The digital PID controller is described by the pulse transfer function and then its three gains are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.