Electrorheology of conducting polyaniline-$BaTiO_3$ composite

  • Kim Ji-Hye (Department of Polymer Science and Engineering, Inha University) ;
  • Fang Fei Fei (Department of Polymer Science and Engineering, Inha University) ;
  • Lee Ki-Bo (Department of Polymer Science and Engineering, Inha University) ;
  • Choi Hyoung-Jin (Department of Polymer Science and Engineering, Inha University)
  • Published : 2006.06.01

Abstract

Organic-inorganic composite of polyaniline and barium titanate (PANI-$BaTiO_3$) was synthesized via an in-situ oxidation polymerization of aniline in the presence of barium titanate ($BaTiO_3$) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/$BaTiO_3$ composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/$BaTiO_3$ composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic $BaTiO_3$ particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.

Keywords

References

  1. Chin, B.D. and O.O. Park, 2001, Dispersion stability and electrorheological properties of polyaniline particle suspensions stabilized by poly (vinyl methyl ether), J. Colloid Interf. Sci. 234, 334-350
  2. Cho, M.S., H.J. Choi and W.S. Ahn, 2004a, Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels, Langmuir 20, 202-207 https://doi.org/10.1021/la035051z
  3. Cho, M.S., J.H. Lee, H.J. Choi, K.H. Ahn, S.J. Lee and D. Jeon, 2004b, Linear viscoelasticity of semiconducting polyaniline based electrorheological suspensions, J. Mater. Sci. 39, 1377- 1382 https://doi.org/10.1023/B:JMSC.0000013900.26175.cc
  4. Cho, M.S., H.J. Choi and M.S. Jhon, 2005, Shear stress analysis of a semiconducting polymer based electrorheological fluid system, Polymer 46, 11484-11488 https://doi.org/10.1016/j.polymer.2005.10.029
  5. Choi, H.J., T.W. Kim, M.S. Cho, S.G. Kim and M.S. Jhon, 1997, Electrorheological characterization of polyaniline dispersions, Eur. Polym. J. 33, 699-703 https://doi.org/10.1016/S0014-3057(96)00225-X
  6. Choi, H.J., J.H. Lee, M.S. Cho and M.S. Jhon, 1999, Electrorheological characterization of semiconducting polyaniline suspension, Polym. Eng. Sci. 39, 493-499 https://doi.org/10.1002/pen.11439
  7. Choi, H.J., M.S. Cho, J.W. Kim, C.A. Kim and M.S. Jhon, 2001, A yield stress scaling function for electrorheological fluids, Appl. Phys Lett. 78, 3806-3808 https://doi.org/10.1063/1.1379058
  8. Choi, K.C., E.K. Lee and S.Y. Choi, 2005, Preparation and characterization of conductive polyurethane films, J. Ind. Eng. Chem. 11, 66-75
  9. Gospodinova, N. and L. Terlemezyan, 1998, Conducting polymers prepared by oxidative polymerization: Polyaniline, Prog. Polym. Sci. 23, 1443-1484 https://doi.org/10.1016/S0079-6700(98)00008-2
  10. Hao, T., A. Kawai and F. Ikazaki, 2000, The yield stress equation for the electrorheological fluids, Langmuir 16, 3058-3066 https://doi.org/10.1021/la990881r
  11. Ikazakiy, F., A. Kawaiy, K. Uchiday, T. Kawakamiz and K. Edamurax, 1998, Mechanisms of electrorheology: The effect of the dielectric property, J. Phys. D: Appl. Phys. 31, 336-347 https://doi.org/10.1088/0022-3727/31/3/014
  12. James, D.F. and B.C. Blakey, 2004, Comparison of the rheologies of laterite and goethite suspensions, Korea-Australia Rheol. J. 16, 109-115
  13. Kim, D.H., S.H. Chu, K.H. Ahn and S.J. Lee, 1999, Dynamic simulation of squeezing flow of ER fluids using parallel processing, Korea-Australia Rheol. J. 11, 233-240
  14. Kim, J.W., Y.H. Cho, H.J. Choi, H.G. Lee and S.B. Choi, 2002, Electrorheological semi-active damper: Polyaniline based ER system, J. Intelligent Mater. Sys. Stru. 13, 509-513 https://doi.org/10.1106/104538902028669
  15. Kim, J.W., C.A. Kim, H.J. Choi and S.B. Choi, 2006, Role of surfactant on damping performance of polyaniline based electrorheological suspension, Korea-Australia Rheol. J. 18, 25-30
  16. Kareive, A., S. Tautkus and R. Rapalaviciute, 1999, Sol-gel synthesis and characterization of barium titanate powders, J. Mater. Sci. 34, 4853-4857 https://doi.org/10.1023/A:1004615912473
  17. Klingerberg, D.J., F. van Swol and C.F. Zukoski, 1991, The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit, J. Chem. Phys. 94, 6170-6178 https://doi.org/10.1063/1.460403
  18. Lee, Y.H., Y.W. Ju, H.R. Jung, Y.I. Huh and W.J. Lee, 2005, Preparation of polypyrrole/sulfonated-SEBS conducting composites through an inverted emulsion pathway, J. Ind. Eng. Chem. 11, 550-555
  19. Mercouri, G.K., G.W. Chun, O.M. Henry and R.K. Carl, 1989, Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels, J. Am. Chem. Soc. 111, 4139-4141 https://doi.org/10.1021/ja00193a078
  20. Patil, R.C. and S. Radhakrishnan, 2001, Piezoresistivity of conducting polyaniline/$BaTiO_3$ composite, J. Mater. Res. 16, 1982-1988 https://doi.org/10.1557/JMR.2001.0271
  21. See, H., 2004, Advances in electro-rheological fluids: materials, modeling and applications, J. Ind. Eng. Chem. 10, 1132-1145
  22. Strounina, E.V., R. Shepherd, L.A.P. Kane-Maguire and G.G. Wallace, 2003. Conformational changes in sulfonated polyaniline caused by metal salts and OH-, Synth. Met. 135-136, 289-290 https://doi.org/10.1016/S0379-6779(02)00540-4
  23. Sung, J.H., I. Lee and H.J. Choi, 2004a, Electrorheological response of polyaniline-$TiO_2$ composite suspensions Int. J. Mod. Phys. B 19, 1128-1134 https://doi.org/10.1142/S0217979205029961
  24. Sung, J.H., M.S. Cho, H.J. Choi and M.S. Jhon, 2004b, Electrorheology of semiconducting polymers, J. Ind. Eng. Chem. 7, 1217-1229
  25. Sung, J.H. and H.J. Choi, 2004c, Electrorheological characterisitcis of poly (o-ethoxy) aniline nanocomposite, Korea-Australia Rheol. J. 16, 193-199
  26. Trlica, J., P. Saha, O. Quadrat and J. Stejskal, 2000, Electrorheology of polyaniline-coated silica particles in silicone oil, J. Phys. D: Appl. Phys. 33, 1773-1780 https://doi.org/10.1088/0022-3727/33/15/304
  27. Wei, J.H., J. Shi, J.G. Guan and R.Z. Yuan, 2004, Synthesis and electrorheological effect of PAn-$BaTiO_3$ nanocomposite, J. Mater. Sci. 39, 3457-3460 https://doi.org/10.1023/B:JMSC.0000026950.09067.84
  28. Zhao, X.P. and J.B. Yin, 2002, Preparation and electrorheological characteristics of rare-earth-doped $TiO_2$ suspensions, Chem. Mater. 14, 2258-2263 https://doi.org/10.1021/cm011522w
  29. Zhao, X.P. and J.B. Yin, 2006, Advances in electrorheological fluids based on inorganic dielectric materials, J. Ind. Eng. Chem. 12, 184-198