패혈증 생존 및 사망 환자 혈장에서 단백질 칩을 이용한 분석의 차이

Difference in Protein Markers According to the Survival of Sepsis Patients using Protein Chips

  • 박명옥 (강원대학교 의과대학 내과학교실 및 강원대학교병원 임상의학연구소) ;
  • 이희영 (강원대학교 의과대학 내과학교실 및 강원대학교병원 임상의학연구소) ;
  • 손희정 (강원대학교 의과대학 마취과학교실 및 강원대학교병원 임상의학연구소) ;
  • 성지현 (강원대학교 의과대학 생화학교실 및 강원대학교병원 임상의학연구소) ;
  • 이승준 (강원대학교 의과대학 내과학교실 및 강원대학교병원 임상의학연구소) ;
  • 이성준 (강원대학교 의과대학 내과학교실 및 강원대학교병원 임상의학연구소) ;
  • 하권수 (강원대학교 의과대학 생화학교실 및 강원대학교병원 임상의학연구소) ;
  • 김우진 (강원대학교 의과대학 내과학교실 및 강원대학교병원 임상의학연구소)
  • Park, Myoung Ok (Department of Internal Medicine, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Lee, Heui Young (Department of Internal Medicine, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Son, Hee Jung (Department of Anesthesia, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Sung, Ji Hyun (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Lee, Seung Joon (Department of Internal Medicine, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Lee, Sung Joon (Department of Internal Medicine, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Ha, Kwon Soo (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital) ;
  • Kim, Woo Jin (Department of Internal Medicine, College of Medicine, Kangwon National University and the Clinical Research Institute of Kangwon National University Hospital)
  • 투고 : 2006.03.22
  • 심사 : 2006.07.10
  • 발행 : 2006.07.30

초록

배 경: 패혈증 환자의 예후를 예측하는 데 현재 사용되고 있는 임상적 채점 방식은 몇가지 제한점이 있다. 그래서 단백질체학(proteomics) 기법을 사용하여 표지자(proteomic biomarkers)를 찾으려 연구를 진행하였다. 방 법: 본 연구에서는 16명의 패혈증환자에게서 중환자실에 입원하자마자 혈장을 채취하였다. 패혈증의 예후를 예측할 수 있는 표지자를 찾기 위해 Surface-enhanced laser desorption/ionization time-of-flight (SELDI -TOF) mass spectrometry를 사용하였다. 결 과: 사망환자와 생존환자 사이에 통계적으로 유의한 차이가 있는 6개의 단백표지자를 발견하였고 이들은 패혈증 환자의 예후 예측과 치료계획수립에 도움이 될 것으로 생각된다. 결 론: 프로테오믹 마커는 패혈증 환자의 예후를 예측하고 치료계획을 세우는 데 있어 유용하게 이용될 가능성이 있을 것으로 사료된다.

Background; Several clinical scoring systems are currently being used to predict the outcome of sepsis, but they all have certain limitations. Therefore, we sought to identify the proteomic biomarkers, with wsing proteomic tools, that differed according to the outcome of sepsis patients. Methods; Upon admission to the ICU, blood samples were obtained from the 16 patients with sepsis who were enrolled in this study. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI -TOF MS) was used to identify the markers that could predict the outcome of sepsis. Results; We found six peaks, by using cation and anion chips, that statistically differed between those patients who died and those who survived. Conclusion; The biomarkers we found by using proteomic tools may help predict the prognosis and also plan the treatment of sepsis.

키워드

참고문헌

  1. Annane D, Bellisant E, Cavaillon JM. Septic shock. Lancet 2005;365:63-78 https://doi.org/10.1016/S0140-6736(04)17667-8
  2. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003;348:138-50 https://doi.org/10.1056/NEJMra021333
  3. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818-29 https://doi.org/10.1097/00003246-198510000-00009
  4. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, BergnerM, Bastos PG, et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991;100:1619-36 https://doi.org/10.1378/chest.100.6.1619
  5. le Gall JR, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, et al. A simplified acute physiology score for ICU patients. Crit Care Med 1984;12:975-7 https://doi.org/10.1097/00003246-198411000-00012
  6. Lemeshow S, Teres D, Avrunin JS, Gage RW. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med 1988;16:470-7 https://doi.org/10.1097/00003246-198805000-00002
  7. de Rooji SE, Abu-Hanna A, Levi M, de Jonge E. Factors that predict outcome of intensive care treatment in very elderly patients: a review. Crit Care 2005;9:R307-14 https://doi.org/10.1186/cc3536
  8. Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD. Assessment of the performance of five intensive care scoring models within a large Scottish databases. Crit Care Med 2000;28:1820-7 https://doi.org/10.1097/00003246-200006000-00023
  9. Polderman KH, Thijs LG, Girbes AR. Interobserver variability in the use of APACHE II score. Lancet 1999;353:380
  10. Morales IJ, Peters SG, Afessa B. Hospital mortality rate and length of stay in patients admitted at night to the intensive care unit. Crit Care Med 2003;31:858-63 https://doi.org/10.1097/01.CCM.0000055378.31408.26
  11. Rosenberg AL, Hofer TP, Strachan C, Watts CM, Hayward RA. Accepting critically ill transfer patients: adverse effect on a referral center's outcome and benchmark measures. Ann Intern Med 2003138: 882-90 https://doi.org/10.7326/0003-4819-138-11-200306030-00009
  12. Petricoin EF 3rd, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS, Hitt BA, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002;94:1576-8 https://doi.org/10.1093/jnci/94.20.1576
  13. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572-7 https://doi.org/10.1016/S0140-6736(02)07746-2
  14. Papadopoulos MC, Abel PM, Agranoff D, Stich A, Tarelli E, Bell BA, et al. A novel and accurate diagnostic test for human African trypanosomiasis. Lancet 2004363:1358-63 https://doi.org/10.1016/S0140-6736(04)16046-7
  15. Zhu XD, Zhang WH, Li CL, Xu Y, Liang WJ, Tien P. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J Gastroenterol 2004;10:2327-9 https://doi.org/10.3748/wjg.v10.i16.2327
  16. Burchardi H, Schneider H. Economic aspects of severe sepsis: a review of intensive care unit costs, cost of illnessand cost effectiveness of therapy. Pharmacoeconomics 2004;22:793-813 https://doi.org/10.2165/00019053-200422120-00003
  17. Ahn WS, Park SP, Bae SM, Lee JM, Namkoong SE, Nam GH, et al. Identification of hemoglobin-$\alpha$ and –$\beta$ subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer. Cancer Sci 2005;96:197-201 https://doi.org/10.1111/j.1349-7006.2005.00029.x
  18. Ilyin SE, Belkowski SM, Plata-Salaman CR. Biomarker discovery and validation: technologies and integrative approaches. Trends biotechnol 2004;22: 411-6 https://doi.org/10.1016/j.tibtech.2004.06.005
  19. Rodland KD. Proteomics and cancer diagnosis: the potential of mass spectrometry. Clin Biochem 2004;37:579-83 https://doi.org/10.1016/j.clinbiochem.2004.05.011
  20. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, et al. Effect of procalcitonin- guided treatment on antibiotic use and outcome in lower respiratory tract infections: clusterrandomised, single-blinded intervention trial. Lancet 2004;363:600-7 https://doi.org/10.1016/S0140-6736(04)15591-8
  21. Colonna M, Facchetti F. TREM-1: A new player in acute inflammatory responses. JInfect Dis 2003;187: S397-401 https://doi.org/10.1086/374754
  22. Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A Gentina T, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med 2006;34:532-7 https://doi.org/10.1097/01.CCM.0000198525.82124.74