DOI QR코드

DOI QR Code

Crustal Deformation Velocities Estimated from GPS and Comparison of Plate Motion Models

GPS로 추정한 지각변동 속도 및 판 거동 모델과의 비교

  • 송동섭 (성균관대학교 토목환경공학과) ;
  • 윤홍식 (성균관대학교 토목환경공학과)
  • Received : 2006.05.15
  • Accepted : 2006.06.21
  • Published : 2006.09.30

Abstract

GPS is an essential tool for applications that be required high positioning precision, for the velocity field estimation of tectonic plates. The three years data of eight GPS permanent station were analyzed to estimate crustal deformation velocities using Gipsy-oasis II software. The velocity vectors of GPS stations are estimated by linear regression method in daily solution time series. The velocities have a standard deviation of less than 0.1mm/yr and the magnitude of velocities given by the Korean GPS permanent stations were very small, ranging from 25.1 to 31.1 mm/yr. The comparison between the final solution and other sources, such as IGS velocity result calculated from SOPAC was accomplished and the results generally show good agreement for magnitude and direction in crustal motion. To evaluate the accuracy of our results, the velocities obtained from six plate motion model was compared with the final solution based on GPS observation.

GPS는 지각판 속도 추정과 같은 높은 정밀도가 요구되는 연구 분야에서 필수적이다. 본 연구에서는 GPS 상시관측소 8개소의 3년간 관측 데이터를 Gipsy-OasisII 소프트웨어를 이용하여 한반도의 지각변동량을 계산하였다. 지각변동 속도벡터는 일별 처리 결과의 시계열 분석에 의한 선형 회귀분석으로 추정하였다. 추정된 변동 속도의 표준편차는 0.1mm/yr 이하였으며, 그 크기는 25.1~31.1mm/yr의 범위로 매우 작게 나타났다. SOPAC에서 계산한 IGS의 계산결과와 비교한 결과 보편적으로 지각변동의 크기와 방향이 잘 일치되는 경향을 나타내었다. 본 연구 결과를 평가하기 위하여 6개의 판 거동 모델의 결과와도 비교를 하였다.

Keywords

References

  1. 박필호, 최위찬, 안용원, 임형철, 박종욱, 조정호(2001) 남한 지역의 GPS 지각속도와 신기지구조의 예비적 해석, 지질학회지, 대한지질학회, 제37권 제3호, pp. 454-464
  2. 송동섭, 윤홍식(2005) 지각판 모델별 남한 지역의 지각 변동량 비교 연구, 대한토목학회 정기학술대회논문집, 대한토목학회, pp. 3598-3602
  3. 윤홍식, 황진상(2002) 초장기선 해석을 위한 GPS 데이터 처리 소프트웨어의 위치결정 알고리즘 비교, 대한토목학회논문집, 대한토목학회, 제22권 제3D호, pp. 571-582
  4. Altamini, Z., Sillard, P., and Boucher, C. (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J Geophys. Res., 107(BIO), 2214, doi : 10.1029 /2001JB000561 https://doi.org/10.1029/2001JB000561
  5. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S. (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., Vol. 21, pp.2191-2194 https://doi.org/10.1029/94GL02118
  6. Drewes, H. and Angermann, D. (2001) The Actual Plate Kinematic and Crustal Deformation Model 2000 (APKIM2000) as a Geodetic Reference System, AIG 2001 Scientific Assembly, Budapest, 2-8 Sept
  7. Gregorius, T. (1996). GIPSY-OASIS II: How it works, Department of Geomatics, University of Newcastle upon Tyne, pp. 152
  8. Gripp, A.E. and Gordon, R.G. (2002) Young tracks of hotspots and current plate velocities, Geophys. J Int., 150, pp. 321-361 https://doi.org/10.1046/j.1365-246X.2002.01627.x
  9. Hamdy, A. M., Park, P. H., Lim, H. C. and Park, K. D. (2004) Present-day relative displacements between the Jeju Island and the Korean Peninsula as seen from GPS observations, Earth Planet Space Letter, Vol. 56, pp. 927-931 https://doi.org/10.1186/BF03352540
  10. Hamdy, A. M., Park, P. H., and Jo, B. G. (2004) Preliminary crustal movement study around the Honam shear zone and Okchon Belt(south Korea) using GPS observations, Geosciences Journal, Vol. 8, No. 1, pp. 109-112 https://doi.org/10.1007/BF02910284
  11. Hamdy, A. M., Park, P. H. and Lim, H. C. (2005) Horizontal Deformation in South Korea from permanent GPS Network data, 2000-2003, Earth Planet Space, Vol. 57, pp. 77-82 https://doi.org/10.1186/BF03352551
  12. Kreemer, c, Holt, W. E., and Haines, A. J. (2003) An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J Int., Vol. 154, pp. 8-34 https://doi.org/10.1046/j.1365-246X.2003.01917.x
  13. McCarthy, D. D. (1996) IERS Conventions: IERS Technical Note 2,. Central Bureau of IERS Observatoire de Paris, pp. 95
  14. Monico, J. F. G. and Perez, J. A. S. (2001) Integration of a Regional GPS Network within ITRF using Precise Point Positioning, In dam, J., K.P. Schwarz (Org.) Vistas for Geodesy in the new
  15. Monico, J. F. G. (2000a) Posicionamento por Ponto de Alta Precisao: Uma Ferramenta para a Geodinamica, Revista Brasileira de Jeofisica. Rio de Janeiro, RJ, Vol. 18, No. 1, pp. 1-10
  16. Parkinson, B. W. (1996) Introduction and Heritage of NAVSTAR, the Global Positioning System, In Parkinson, B. W. and J. J. Spilker Jr. Global Positioning System: Theory and Applications, Cambridge: American Institute of Aeronautics and Astronautics, Vol. 1, pp. 793
  17. Perez, J. A. S., Monico, J. F. G. and Chaves, J. C. (2003) Velocity field estimation using GPS precise point positioning: the south american plate case, Journal of Global Positioning Systems, Vol. 2, No.2, pp. 90-99 https://doi.org/10.5081/jgps.2.2.90
  18. Peter, B. (2003) An updated digital model of plate boundaries, An electronic journal of the earth sciences, Vol. 4, No.3, pp. 1-52
  19. Prawirodirdjo, L. and Bock, Y. (2004) Instantaneous global plate motion model from 12 years of continuous GPS observations, J Geophys. Res., 109, B08405, doi:10.1029/2003JB002944
  20. Sa, N. C. (1999) GPS: Fundamentos e Aplicacoes, Departamento de Geofisica, IAG-USP, pp. 87
  21. Sella, G. F., Dixon, T.H. and Mao, A. (2002) REVEL: A model for recent plate velocities from space geodesy, J Geophys. Res., 107, B4, doi:l0.1029/2000JB000033
  22. Zonenshain, L. P. and Savostin, L. A. (1981) Geodynamics of the Baikal rift zone and plate tectonics of Asia, Tectonophysics, Vol. 76, No. 1