DOI QR코드

DOI QR Code

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles

LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정

  • 곽기석 (한국건설기술연구원 국토지반연구부) ;
  • 박재현 (한국건설기술연구원 국토지반연구부) ;
  • 최용규 (경성대학교 건설환경공학부) ;
  • 허정원 (전남대학교 해양공학전공)
  • Received : 2006.06.05
  • Accepted : 2006.07.15
  • Published : 2006.09.30

Abstract

The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

국내 기초구조물에 대한 저항계수 산정 및 하중저항계수설계법(LRFD) 개발의 일환으로 항타강관말뚝에 대한 저항편향계수를 산정하였다. 정재하시험 및 지반조사 자료를 수집하여 국내외의 기준에 따른 극한지지력을 산정한 후 말뚝의 대표 극한지지력을 결정하였다. 자료의 통계분석 결과에 기초하면, Davisson 기준이 말뚝의 극한지지력을 가장 합리적으로 평가하는 것으로 나타났다. 정역학적 지지력 공식과 N치를 이용한 Meyerhof 경험식을 이용하여 설계 극한지지력을 산정하였다. 이들 자료의 비교 분석을 통해 항타강관말뚝의 저항편향계수는 정역학적 지지력공식과 Meyerhof 경험식에 대해 각각 0.98, 1.46으로 산정되었다. 또한 두 가지 지지력 산정방법 중 정역학적 지지력공식의 불확실성이 상대적으로 낮은 것으로 나타났다.

Keywords

References

  1. 건설교통부(2003) 구조물기초 설계기준, (사)한국지반공학회
  2. 사)한국지반공학회(1997) 지반조사결과의 해석 및 이용, 지반공학 시리즈 1, 도서출판 구미서관
  3. (사)한국지반공학회(2002) 깊은기초, 지반공학시리즈 4, 도서출판 구미서관
  4. American Society of Civil Engineers (1997) Standard Guidelines for the Design and Installation of Pile Foundations, ASCE 20-96, ASCE, Reston, Virgiia, USA
  5. Davisson, M. (1972) High capacity piles, Proceedings, Soil Mechanics Lecture Series on Innovations in Foundation Construction. ASCE, Illinois Section, Chicago, IL, pp. 82-112
  6. DeBeer, E. (1970) Proefondervindellijke bijdrage tot de studie van het grandsdraagvermogen van zand onder funderinger op staal. English version, Geotechnique, Vol. 20, No. 4, pp. 387-411 https://doi.org/10.1680/geot.1970.20.4.387
  7. Hara, A., Ohata, T., and Niwa, M. (1971) Shear modulus and shear strength of cohesive soils, Soils and Foundations, Vol. 14, No. 3, pp. 1-12
  8. Meyerhof, G.G. (1976) Bearing capacity and settlement of pile foundations, Journal of the Geotechnical Engineering Division, ASCE., Vol. 102, No. GT3, pp. 197-228
  9. Paikowsky, S., Operstein, V., and Bachard, M. (1999) Express Method of Pile Testing by Static Cyclic Loading, Research Report submitted to the Massachusetts Highway Department, University of Massachusetts, Lowell, MA
  10. Paikowsky, S.G (2004) Load and Resistance Factor Design for Deep Foundations, NCHRP report 507, Transportation Research Board, Washington, D.C
  11. Phoon, K.K. (2004) Towards reliability-based design for geotechnical engineering, Uncertainty, Risk and Reliability in Geotechnical Engineering, Korean Geotechnical Society, pp. 3-33
  12. Terzaghi, K. (1942) Discussion of the progress report of the committee on the bearing value of pile foundations, Proceedings. ASCE., Vol. 68, pp. 311-323
  13. Whitiam, J.L., Voytko, E.P., Barker, R.M., Duncan, J.M., Kelly, B.C., Musser, S.C., and Elias, V. (2001) Load and Resistance Factor Design(LRFD) for Highway Bridge Substructures, Publication No. FHWA HI-98-032, NHI Course No. 13068, Federal Highway Administration, Washington D.C
  14. Yoon, G.L. and O'Neill, M.W. (1997) Resistance factors for single driven piles from experiments, Transportation Research Record, No. 1569, pp. 47-54