DOI QR코드

DOI QR Code

Stress Recovery Technique by Ordinary Kriging Interpolation in p-Adaptive Finite Element Method

적응적 p-Version 유한요소법에서 정규 크리깅에 의한 응력복구기법

  • 우광성 (영남대학교 건설환경공학부) ;
  • 조준형 (한국전력공사 서울전력구 건설처 토목1부) ;
  • 이동진 ((주)한국기술개발 구조부)
  • Received : 2005.12.14
  • Accepted : 2006.04.08
  • Published : 2006.07.31

Abstract

Kriging interpolation is one of the generally used interpolation techniques in Geostatistics field. This technique includes the experimental and theoretical variograms and the formulation of kriging interpolation. In contrast to the conventional least square method for stress recovery, kriging interpolation is based on the weighted least square method to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by variogram modeling for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In addition to this, the p-level is increased non-uniformly or selectively through a posteriori error estimation based on SPR (superconvergent patch recovery) technique, proposed by Zienkiewicz and Zhu, by auto mesh p-refinement. The cut-out plate problem under tension has been tested to validate this approach. It also provides validity of kriging interpolation through comparing to existing least square method.

크리깅 보간법은 지구통계학 분야에 주로 사용되는 보간법의 하나이다. 이 방법은 실험적 베리오그램과 이론적 베리오그램의 작성과 크리깅 보간법의 정식화에 관한 연구를 포함하고 있다. 종래의 응력복구를 위한 최소제곱법과 대조적으로, 가우스적분점에서의 응력데이타로부터 준정해를 얻기 위해 가중 최소제곱법에 기초를 둔다. 즉, 동일한 가중치를 사용하는 종래의 방식들과는 달리 가우스적분점에서의 응력값의 보간을 위하여 베리오그램 모델링을 통한 가중치가 결정된다. 한편, 분할된 요소망에 Zienkiewicz와 Zhu에 의해 제안된 SPR기법에 기초를 둔 사후오차평가를 통해 p-차수를 균등 또는 선택적으로 증가시키는 자동체눈 방식이 도입되었다. 이 방법의 정당성을 보기위해 인장력을 받는 개구부를 갖는 평판문제를 해석하였다. 또한, 기존의 최소제곱법과의 비교를 통한 크리깅보간법의 정당성을 보여 주었다.

Keywords

References

  1. 우광성, 조준형, 안재석(2003) 사후오차평가에 의한 적응적 p-체눈 세분화, 대한목학회 논문집, 대한토목학회, 제23권 제2A호, pp. 177-185
  2. 최종근(2002) 공간정보 모델링-크리깅과 최적화기법, 구미서관, pp. 83-163
  3. Ainsworth, M. and Senior, B. (1997) An adaptive refinement strategy for hp-finite element computations, Appl. Numer. Math., Vol. 101, pp. 1-88
  4. Ainsworth, M. and Senior, B. (1997) Aspects of an adaptive hp-finite element method: adaptive strategy, conforming Approximation and Efficient Solvers, Comput. Meth. Appl. Mech. Engrg., Vol. 101, pp. 65-87
  5. Babuska, I. and Rheinboldt, W.C. (1980) Reliable error estimation and mesh adaptation for the finite element method, J.T. Oden, Ed., Comput. Meth. Nonlinear Mech., North-Holland Publishing Co., pp. 67-109
  6. Clayton V. Deutsch (1996) Correcting for negative weights in ordinary kriging, Computers & Geosciences, Vol. 22, No. 7, pp. 765-773 https://doi.org/10.1016/0098-3004(96)00005-2
  7. Dai, K.Y., Liu, G.R., Lim, K.M., and Gu, Y.T. (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree method, Computational Mechanics, Vol. 32, pp. 60-70 https://doi.org/10.1007/s00466-003-0462-z
  8. Demkowicz, L., aden, J.T., Rachowicz, W., and Hardy, O. (1989) Toward a universal h-p adaptive finite element strategy Part II: A Posteriori Error Estimation, Comput. Meth. Appl. Mech. Engrg., Vol. 77, pp. 113-180 https://doi.org/10.1016/0045-7825(89)90130-8
  9. Gudmund Host (1998) Kriging by local polynomial, Computational Statistics & Data analysis, Vol. 29, pp. 539-551
  10. Jian, X., Olea, R.A., and Yu, Y.S. (1996) Semivariogram modeling by weighted least squares, Computer & Geosciences, Vol. 22, No. 4, pp. 387-397 https://doi.org/10.1016/0098-3004(95)00095-X
  11. Jorge Kazuo Yamamoto (2000) An alternative measure of the reliability of ordinary kriging estimates, Mathematical Geology, Vol. 32, No. 4, pp. 489-509 https://doi.org/10.1023/A:1007577916868
  12. Yongliang Chen, Xiguo Jiao (2001) Semivariogram Fitting with Linear Programming Computers & Geosciences, Vol. 27, pp. 71-76 https://doi.org/10.1016/S0098-3004(00)00022-4
  13. Zhang, X.F., Van Eijkeren, J.C., and Heemink, A.W. (1995) On the weighted least-square method for fitting a semivariogram model, Computer & Geosciences, Vol. 21, No. 4, pp. 605-608 https://doi.org/10.1016/0098-3004(94)00099-G
  14. Zienkiewicz, O.C. and Zhu, J.Z. (1987) A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Engrg., Vol. 24, pp. 337-357 https://doi.org/10.1002/nme.1620240206
  15. Zienkiewicz, O.C. and Zhu, J.Z. (1992) The superconvergent patch recovery and a posteriori error estimate Part I: The Recovery Technique, Int. J. Numer. Meth. Engrg., Vol. 33, pp. 1331-1364 https://doi.org/10.1002/nme.1620330702
  16. Zienkiewicz, O.C. and Zhu, J.Z. (1992) The superconvergent patch recovery and a posteriori error estimate Part II: Error Estimate and Adativity, Int. J. Numer. Meth. Engrg., Vol. 33, pp. 1365-1382 https://doi.org/10.1002/nme.1620330703