DOI QR코드

DOI QR Code

구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures

  • 김기두 (건국대학교 사회환경시스템공학과) ;
  • 이창수 (서울시립대학교 토목공학과)
  • 투고 : 2005.07.27
  • 심사 : 2006.02.14
  • 발행 : 2006.05.31

초록

순수변위 비선형 4절점 쉘요소의 정식화를 제안하여 철근 콘크리트, 강재및 복합재료등 범용 목적의 구조물의 해석에 적합하도록 하였다. 기하강성의 정식은 2차 운동역학적 관계를 이용하여 쉘이 중립면에서 정의되었고 이러한 기하강성은 면내응력, 휨 모멘트와 수직 전단력의 형태로 구성되어 두꺼운 판 및 쉘의 해석에 효과적이다. 가정된 자연 변형률 방법을 사용하여 전단잠김 문제를 제거한 복합 쉘 요소는 얇은 판및 쉘의 경우에도 정확한 해를 구할 수 있다. 콘크리트 경우 소성이론 및 탄소성 파괴역학에 근거한 비탄성 해석이 가능하며 강재경우 폰미스의 항복이론과 이바노브의 항복이론을 이용한 소성해석이 가능하다. 복합 재료의 수직전단 강성 행렬은 평형방정식으로부터 유도하여 구성하였다. 본 연구에서 제안한 쉘 요소는 해석 예제들이 참고문헌과 잘 일치하여 정확성이 입증되었으며 범용목적의 박판구조 해석에 적합한 것으로 사료 되었다.

A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

키워드

참고문헌

  1. 김기두, 한성천(2003) 대체변형률 쉘 요소를 이용한 적층 복합판 및 쉘의 점탄성적 후좌굴 해석, 대한토목학회 논문집, 대한토목학회, 제23권 제2-A호, pp. 259-270
  2. Ahmad, S., Irons, B.M., and Zienkiewicz, O.C. (1970) Analysis of thick and thin shell structures by curved finite elements, Int. J. Numer. Meth. Engng., 2, pp. 419-451 https://doi.org/10.1002/nme.1620020310
  3. Andelfinger, U. and Ramm, E. (1993) 'EAS-elements for two-dimensional, threedimensional, plate and shell structures and their equivalence to HR-elements', Int. J. Numer. Meth. Engng., Vol. 36, pp. 1311-1337 https://doi.org/10.1002/nme.1620360805
  4. Bates, D.N. (1987) The mechanics of thin walled structures with special reference to finite rotations, Ph.D. Thesis, Dept. of Civil Engineering, Imperial College
  5. Crisfield, M.A. (1974) on an approximate yield criterion for thin steel shell. Internal report, Crowthorne, Berkshire TRRL
  6. Dvorkin, E.N. and Bathe, K.J. (1984) A Continuum Mechanics Based Four-Node Shell Element for General Non-Linear Analysis, Eng. Comput., 1, pp. 77-88 https://doi.org/10.1108/eb023562
  7. Kebari, H. and Cassel, A.C. (1992) A stabilized 9-node non-linear shell element, Int. J. Num. Meth. Eng, 35, pp. 37-61 https://doi.org/10.1002/nme.1620350104
  8. Kim, K.D. (2003) Large Displacement of Elasto-Plastic Analysis of Stiffened Plates and Shells using Co-rotational 8-Node Assumed Strain Element, Structural Engineering and Mechanics, An International Journal, Vol. 15, No. 2 (pp. 199-223) https://doi.org/10.12989/sem.2003.15.2.199
  9. Kim, K.D., Lomboy, G.R., and Han, S.C. (2003) A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells. Comput. Mech., 30(4), pp. 330-342 https://doi.org/10.1007/s00466-003-0415-6
  10. Kim, K.D., Lomboy, G.R., and Voyiadjis, G.Z. (2003) A 4-Node Assumed Strain Quasi-Conforming Shell Element with 6 D.O.F., International Journal for Numerical Methods in Engineering, Volume 58, Issue 14, pp. 2177-2200, December https://doi.org/10.1002/nme.854
  11. Kim, K.D., Voyiadjis George, Z. (1999) Non-linear Finite Element Analysis of Composite Panels, Composites Part B: Engineering, Vol. 30, Iss 4, pp. 383-394 https://doi.org/10.1016/S1359-8368(99)00010-4
  12. Kupfer, H.B. and Gerstle, K.H. (1973) 'Behavior of concrete under biaxial stresses', Journal of the Engineering Mschanics Division, ASCE, No. EM4, Agust
  13. Maekawa, K., Pimanmas, A., and Okamura, H. (2003) 'Nonlinear mechanics of reinforced concrete', Spon Press
  14. Pucha, N.S. and Reddy, J.N. (1984) A mixed shear flexible finite element for the analysis of laminated plates. Computer methods in applied mechanics and engineering, 44(2), pp. 213-227 https://doi.org/10.1016/0045-7825(84)90143-9
  15. Shi, G. and Voyiadjis, G.Z. (1991) Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness matrix. Computers and Structures. 41, pp. 757-763 https://doi.org/10.1016/0045-7949(91)90185-O
  16. Simo, J.C. and Kennedy, J.G. (1992) On a stress resultant geometrically exact shell model Part V: Nonlinear Plasticity: Formulation and Integration Algorithm, Compt. Methods Appli. Mech. Engrg. 96, pp. 133-171 https://doi.org/10.1016/0045-7825(92)90129-8
  17. Tanabadee, Ratsadonpakdee (2004) An assumed strain 4-node shell element for nonlinear analysis of shell structures, School of Civil engineering, Master Thesis, Asian Institute of technology, Thailand
  18. Whitney, J.M. (1969) Bending-extensional coupling in laminated plates under transverse loading. J Composite Matl 3, pp. 20-28 https://doi.org/10.1177/002199836900300102
  19. XFINAS (2003) Nonlinear structural dynamic analysis system, School of Civil Engineering, A.I.T., Thailand