Kinetic Features of the Cobalt Dihalide/Methylaluminoxane Catalytic System in 1,3-Butadiene Polymerization

  • Nath Dilip Chandra Deb (Chemical Resources Laboratory, Tokyo Institute of Technology) ;
  • Fellows Christopher M. (School of Biological, Biomedical and Molecular Sciences, University of New England) ;
  • Shiono Takeshi (Chemical Resources Laboratory, Tokyo Institute of Technology)
  • Published : 2006.06.01

Abstract

The kinetic features of polymerization with an active site comprising cobalt dihalides ($CoX_2$, where X=Cl, Br, I) activated by methylaluminoxane (MAO) were investigated in 1,3-butadiene polymerization. The catalytic system exhibited the characteristic features of living polymerization. The initiation ($k_i$) and propagation ($k_p$) rate coefficients were estimated using the kinetic model for slow initiation previously reported by Shiono et al. The energy of activation fur the propagation reaction was calculated to be 27-30 $kJmol^{-1}$. The marked changes in reaction rate observed with different halides could be adequately described in terms of variations in the initiation process, with the same Arrhenius curve fitting propagation rate coeffcients estimated from all three halides, suggesting that the halide does not participate in the growing chain end.

Keywords

References

  1. D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 203, 756 (2002) https://doi.org/10.1002/1521-3935(20020301)203:4<756::AID-MACP756>3.0.CO;2-K
  2. D. C. D. Nath, T. Shiono, and T. Ikeda, J. Polym. Sci.; Part A: Polym. Chem., 40, 3086 (2002) https://doi.org/10.1002/pola.10395
  3. D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 203, 1171 (2002) https://doi.org/10.1002/1521-3935(200206)203:9<1171::AID-MACP1171>3.0.CO;2-U
  4. D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 204, 2017 (2003) https://doi.org/10.1002/macp.200350052
  5. A. Peluso, R. Improta, and A. Zambelli, Organometallics, 19, 411 (2000) https://doi.org/10.1021/om980940g
  6. R. Improta and A. Peluso, Macromolecules, 32, 6852 (1999) https://doi.org/10.1021/ma981866g
  7. P. Cass, K. Pratt, T. Mann, B. Laslett, E. Rizzardo, and R. Burford, J. Polym. Sci.; Part A: Polym. Chem., 37, 3277 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3277::AID-POLA25>3.0.CO;2-J
  8. H. T. Ban, Y. Tsunogae, and T. Shiono, J. Polym. Sci.; Part A: Polym. Chem., 42, 2698 (2004) https://doi.org/10.1002/pola.20144
  9. D. C. D. Nath, T. Shiono, and T. Ikeda, Appl. Catal., A, 238, 193 (2003) https://doi.org/10.1016/S0926-860X(02)00344-7
  10. K. Endo and N. Hatakeyama, Kobunshi Ronbunshu, 59, 309 (2002) https://doi.org/10.1295/koron.59.309
  11. A. Miyazawa, T. Kase, and K. Soga, Macromolecules, 33, 2796 (2000) https://doi.org/10.1021/ma991489n
  12. A. Miyazawa, T. Kase, and K. Soga, J. Polym. Sci.; Part A: Polym. Chem., 37, 695 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<695::AID-POLA3>3.0.CO;2-2
  13. Y. Nakayama, Y. Baba, H. Yasuda, K. Kawakita, and N. Ueyama, Macromolecules, 36, 7953 (2003) https://doi.org/10.1021/ma0300802
  14. G. Ricci and S. Italia, Macromol. Chem. Phys., 195, 1389 (1994) https://doi.org/10.1002/macp.1994.021950422
  15. J. C. Marechal, F. Dawans, and P. H. Teyssie, J. Polym. Sci.: Part A-1, 8, 1993 (1970) https://doi.org/10.1002/pol.1970.150080809
  16. F. De Candia, G. Maglio, A. Musco, and G. Paiaro, Inorg. Chim. Acta, 23, 233 (1968)
  17. K. Vrieze, in Fluxional Allyl Complexes, L. J. Jackman and F. A. Cotton, Eds., New York, 1975
  18. K. Endo, Y. Uchida, and Y. Matsuda, Macromol. Chem. Phys., 197, 3515 (1996) https://doi.org/10.1002/macp.1996.021971102
  19. J. Karl, M. Dahlmann, G. Erker, and K. Bergander, J. Am. Chem. Soc., 120, 5643 (1998) https://doi.org/10.1021/ja9743809
  20. M. Seth and T. Ziegler, Macromolecules, 36, 6613 (2003) https://doi.org/10.1021/ma0301247
  21. P. Cass, K. Pratt, K. Fairhall, B. Laslett, and E. Rizzardo, J. Polym. Sci.; Part A: Polym. Chem., 39, 2256 (2001) https://doi.org/10.1002/pola.1202