References
- Arand, M., H. Wagner, and F. Oesch. 1996. Asp(333), Asp(495), and His(523) form the catalytic triad of rat soluble epoxide hydrolase. J. Biol. Chem. 271: 4223-4229 https://doi.org/10.1074/jbc.271.8.4223
- Armstrong, R. N. 1987. Enzyme-catalyzed detoxication reactions: mechanisms and stereochemistry. CRC Crit. Rev. Biochem. 22: 39-88 https://doi.org/10.3109/10409238709082547
- Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron 50: 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
- Botes, A. L., J. Lotter, O. H. Rhode, and A. Botha. 2005. Interspecies differences in the enantioselectivity of epoxide hydro lases in Cryptococcus laurentU (Kufferath) C.E. Skinner and Cryptococcus podzolicus (BabJeva & Reshetova) Golubev. Syst. Appl. Microbiol. 28: 27-33
- Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12: 225-228 https://doi.org/10.1023/A:1008825508904
- Choi, W. J., E. Y. Lee, S. J. Yoon, and C. Y. Choi. 1999. Biocatalytic production of chiral epichlorohydrin in organic solvent. J. Biosci. Bioeng. 88: 339-341 https://doi.org/10.1016/S1389-1723(00)80022-5
- Cleij, M., A. Archelas, and R. Furstoss. 1998. Microbiological transformations 42. A two-phase preparative scale process for an epoxide hydrolase catalysed resolution of parabromo-a-methyl-styrene oxide. Occurrence of a surprising enantioselectivity enhancement. Tetrahedron: Asymmetry 9: 1839-1842 https://doi.org/10.1016/S0957-4166(98)00180-3
- Elfstrom, L. T. and M. Widersten. 2005. The Saccharomyces cerevisiae ORF YNR064c protein has characteristics of an 'orphaned' epoxide hydrolase. Biochim. Biophys. Acta 1748: 213-221
- Gong, P. F., J. H. Xu, Y. F. Tang, and H. Y. Wu. 2003. Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnol. Prog. 19: 652-654 https://doi.org/10.1021/bp020293v
- Hopmann, K. H., B. M. Hallberg, and F. Himo. 2005. Catalytic mechanism of limonene epoxide hydrolase, a theoretical study. J. Am. Chem. Soc. 127: 14339-14347 https://doi.org/10.1021/ja050940p
- Kasai, N., T. Suzuki, and Y. Furukawa. 1998. Chiral C3 epoxides and halohydrins: their preparation and synthetic applicaticm. J. Mol. Catal. B: Enzym. 4: 237-252 https://doi.org/10.1016/S1381-1177(97)00034-9
- Kim, H. S., J. H. Lee, S. Park, and E. Y. Lee. 2004. Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Biopro. Eng. 9: 62-64 https://doi.org/10.1007/BF02949324
- Kim, H. S., S. J. Lee, E. J. Lee, J. W. Hwang, S. Park, S. J. Kim, and E. Y. Lee. 2005. Cloning and characterization of a fish microsomal epoxide hydrolase of Danio rerio and application to kinetic resolution of racemic styrene oxide. J. Mol. Celtal. B: Enzym. 37: 30-35
- Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh, and S. Park. 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotoru!a g!utinis. Enzyme Microb. Technol. 35: 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
- Marti-Renom, M. A., A. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. 2000, Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29: 291-325 https://doi.org/10.1146/annurev.biophys.29.1.291
- Nardini, M., J. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B. Janssen, and B. W. Dijkstra. 1999. The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 274: 14579-14596 https://doi.org/10.1074/jbc.274.21.14579
- Qing, G, L. -C. Ma, A. Khorchid, G. V. T. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye. 2004. Coldshock induced high-yield protein production in Escherichia coli. Nature Biotechnol. 22: 877-882 https://doi.org/10.1038/nbt984
- Rink, R., J. H. L. Spelberg, R. J. Pieters, J. Kingma, M. Nardini, R. M. Kellogg, B. W. Dijkstra, and D. B. Janssen. 1999. Mutation of tyrosine residues involved in the alkylation half reaction of epoxide hydrolase from Agrobacterium radiobacter ADI results in improved enantioselectivity. J. Am. Chem. Soc. 121: 7417-7418 https://doi.org/10.1021/ja990501o
- Roger A. S. and E. J. Milner-White 1995. RasMol: Biomolecular graphics for all. Trends Biochem. Sci. 20: 374-376 https://doi.org/10.1016/S0968-0004(00)89080-5
- Tokunaga, M., J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen. 1997. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277: 936-938 https://doi.org/10.1126/science.277.5328.936
- Weijers, C. A. G. M. and J. A. M. de Bont. 1999. Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J. Mol. Catal. B: Enzym. 6: 199-214 https://doi.org/10.1016/S1381-1177(98)00123-4
- Xu, Y, J.-H. Xu, J. Pan, L. Zhao, and S.-L. Zhang. 2004. Biocatalytic resolution of nitro-sunstituted phenoxypropylene oxides with Trichosporon loubierii epoxide hydrolase and prediction of their enantiopurity variation with reaction time. J. Mol. Catal. B: Enzym. 27: 155-159 https://doi.org/10.1016/j.molcatb.2003.11.006
- Zou, J., B. M. Hallberg, T. Bergfors, F. Oesch, M. Arand, S. L. Mowbray, and T. A. Jones. 2000. Structure of Aspergillus niger epoxide hydrolase at 1.8 resolution: implication for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8: 111-122 https://doi.org/10.1016/S0969-2126(00)00087-3