Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil

중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용

  • Koo So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 구소연 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Published : 2006.06.01

Abstract

In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

여러 산업현장에서 배출되는 중금속은 독성이 없는 상태로 분해되거나 안정화되지 않고, 먹이사슬을 따라 생물의 체내에 고농도로 축적되어 여러 가지 병을 유발하는 문제점을 가지고 있는 오염물질이다. 이러한 중금속으로 오염된 토양을 정화하기 위하여 식물을 이용한 친환경적이며 경제적인 식물상 복원 기법이 주목 받고 있으며, 그 효율을 증대시키기 위한 방법 중 하나로 식물과 근권미생물 간의 상리공생적 상호관계에 대한 연구가 진행되고 있다. 본 논문에서는 중금속으로 오염된 토양에서 식물과 식물의 근권에서 서식하는 근권세균 사이의 상호 기작에 관한 기존 연구 결과 및 동향에 대하여 알아보았다. 식물의 뿌리에 의해 형성되는 근권의 물리 화학적, 생물학적 특성은 근권세균의 생물량 및 활성, 군집구조에 직 간접적인 영향을 미친다. 뿌리삼출물은 미생물에게 유용한 탄소원과 성장인자로 제공됨으로써 토양 내 서식하고 있는 근권세균의 성장과 대사를 촉진하는 역할을 한다. PGPR은 식물뿌리성장을 억제하는 ethylene의 전구체인 ACC를 제거하는 ACC deaminase활성, 식물성 호르몬인 LAA생성 능력, 철 공급체인 Siderophore합성 능력을 모두 가지고 있을 뿐만 아니라 토양 속 인을 식물이 이용할 수 있도록 가용화 시키는 능력까지 가지고 있는 것으로 나타났다. 이러한 PGPR은 높은 농도의 중금속으로 오염된 토양에서 식물이 보다 잘 성장하고 서식할 수 있도록 도와준다. 따라서 이들 PGPR을 식물상 복원에 적용할 경우, 중금속의 높은 정화 효과를 기대할 수 있다

Keywords

References

  1. Abeles, F. B., P. W. Morgan, and Jr. M. E. Saltveit. 1992. Ethylene in plant biology. 2nd ed. Academic Press, New York, U.S.A
  2. Abou-Shanab, R. A., J. S. Angle, T. A. Delorme, R. L. Chaney, P. van Berkum, H. Moawad, K. Ghanem, and H. A. Ghozlan. 2003. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 158: 219-224 https://doi.org/10.1046/j.1469-8137.2003.00721.x
  3. Barbieri, P., T. Zanelli, E. Galli, and G Zanetti. 1986. Wheat inoculation with Azospirillum brasilence Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid. FEMS Microbial. Lett. 36: 87-90 https://doi.org/10.1111/j.1574-6968.1986.tb01672.x
  4. Barea, J. M. and M. E. Brown. 1974. Effects on plant growth by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl. Bacteriol. 37: 583-593
  5. Bar-Ness, E., Y. Chen, H. Hadar, H. Marschner, and V. Romheld. 1991. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130: 231-241 https://doi.org/10.1007/BF00011878
  6. Blaylock, M. J. and J. W. Huang. 2000. Phytoextraction of Metals, p. 53-70. In Raskin, I. and B.D. Ensley (eds.), Phytoremediation of Toxic Metals Using Plants to Clean-up the Environment. John Wiley & Sons, Inc., New York, U.S.A
  7. Burd, G I., D. G Dixon, and B. R. Glick. 1998. A plant growth-promoting bacterium that decrease Nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668
  8. Curl, E. A. and B. Truelove. 1986. Factors affecting root exudation, p. 79-91. In Bommer, D.F.R. et al. (eds.), The Rhizosphere. Springer-Verlag, Berlin, Heidelberg, Germany
  9. Dakora, F. D. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35-47 https://doi.org/10.1023/A:1020809400075
  10. Deikman, J. 1997. Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant 100: 561-566 https://doi.org/10.1111/j.1399-3054.1997.tb03061.x
  11. Delorme, T. A., J. V. Gagliardi, J. S. Angle, and R. L. Chaney. 2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol. 47: 773-77 https://doi.org/10.1139/cjm-47-8-773
  12. Ebbs, S. D. and L. V. Kochian. 1998. Phytoextraction of zinc by oat(Avena sativa), barley(Hordeum vulgare), and Indian mustard(Brassica juncea). Environ. Sci. Technol. 32: 802-806 https://doi.org/10.1021/es970698p
  13. Fan, T. W. -M., A. N. Lane, M. Shenker, J. P. Bertley, D. Crowley, and R. M. Higashi. 2001. Comprehensive chemical profiling of gramineous plant root exudates using highresolution NMR and MS. Phytochemistry 57: 209-221 https://doi.org/10.1016/S0031-9422(01)00007-3
  14. Francesconi, K., P. Visootiviseth, W. Sridokchan, and W. Goessler. 2002. Arsenic species in an arsenic hyperaccumulating fern, Piryrogramma calomelanos: potential phytoremediator of arsenic-contaminated soil. Sci. Total Environ. 284: 27-35 https://doi.org/10.1016/S0048-9697(01)00854-3
  15. Frankenberger, W. T. Jr. and W. Brunner. 1983. Methods of detection of auxin-indole acetic acid in soil by high performance liquid chromatography. Soil Soc. Am. J. 47: 237-241
  16. Ghosh, M. and S. P. Singh. 2005. A review on phytore-mediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 3: 1-18
  17. Gilbert, E. S. and D. E. Crowley. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63: 1933-1938
  18. Giovanelli, J., S. H. Mudd, and A. H. Datko. 1980. Sulfur amino acids in plants, p. 453-505. In Miflin, B.J. (ed.), Amino acids and derivatives. The biochemistry of plants: a comprehensive treatise, vol. 5. Academic Press, New York, U.S.A
  19. Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393 https://doi.org/10.1016/S0734-9750(03)00055-7
  20. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41: 533-536
  21. Glick, B. R., C. L. Patten, G Holguin, and D. M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growthpromoting bacteria. Imperial College Press, London, England
  22. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentration by plant growthpromoting bacteria. J. Theor. Biol. 190: 63-68 https://doi.org/10.1006/jtbi.1997.0532
  23. Grayston, S. J., D. Vaughan, and D. Jones. 1996. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5: 29-56 https://doi.org/10.1016/S0929-1393(96)00126-6
  24. Hall, J. A., D. Peirson, S. Ghosh, and B. R. Glick. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42
  25. Hegde, R. S. and J. S. Fletcher. 1996. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32: 2471-2479 https://doi.org/10.1016/0045-6535(96)00144-0
  26. John, P. 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol. Biol. Rep. 9: 192-194 https://doi.org/10.1007/BF02672067
  27. Kende, H. 1989. Enzymes of ethylene biosynthesis. Plant Physiol. 91: 1-4 https://doi.org/10.1104/pp.91.1.1
  28. Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79 https://doi.org/10.1023/A:1004260222528
  29. Khan, A. G, 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med Biol. 18: 355-364 https://doi.org/10.1016/j.jtemb.2005.02.006
  30. Kirk, G. J. D., E. E. Santos, and G. R. Findenegg. 1999. Phosphate solubilisation by organic anion excretion from rice(Oryza sativa L.) growing in anerobic soil. Plant Soil 2211: 11-18
  31. Kloepper, J. W., R. Lifshitz, and R. M. Zab1otowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44 https://doi.org/10.1016/0167-7799(89)90057-7
  32. Kramer, U., R. D. Smith, W. W. Wenzel, J. Raskin, and D. E. Salt. 1997. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiol. Plant 115: 1641-1650
  33. Kumar, P. B. A., V. Dushenkov, H. Motto, and I. Raskin. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232-1238 https://doi.org/10.1021/es00005a014
  34. Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of coper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102 https://doi.org/10.1016/S1164-5563(01)01070-6
  35. Kupper, H., F. J. Zhao, and S. P. McGrath, 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119: 305-311 https://doi.org/10.1104/pp.119.1.305
  36. Ma, L. Q., K. M. Komer, C. Tu, W. Zhang, Y. Cai., and E. D. Kennelly. 2001. A fern that hyperaccumulates arsenic. Nature 409: 579 https://doi.org/10.1038/35054664
  37. Mengoni, A., E. Grassi, R. Barzanti, E. G. Biondi, C. Gonnelli, C. K. Kim, and M. Bazzicalupo. 2004. Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii. Microb. Ecol. 48: 209-217 https://doi.org/10.1007/s00248-003-0149-1
  38. Mordukhova, E. A., N. P. Skvortsova, V. V. Kochetkov, A. N. Dubeikovskii, and A. M. Boronin. 1991. Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Mikrobiologiya 60: 494-500
  39. Pandya, S., P. Iyer, V. Gaitonde, T. Parekh, and A. Desai. 1999. Chemotaxis of Rhizobium sp. S2 towards Cajanus cajan root exudates and its major components. Curr. Microbiol. 38: 205-209 https://doi.org/10.1007/PL00006788
  40. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Appl. Enviro. Microbiol. 68: 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  41. Pearce, D., M. J. Bzin, and J. M. Lynch. 1995. The rhizosphere as a biofilm, p. 207-220. In Lappin-Scott, H. M., J. .W. Costerton (Eds.), Microbial Biofilms. Cambridge University Press, Cambridge, Egland
  42. Penrose, D. M. and B. R. Glick. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 47: 368-372 https://doi.org/10.1139/cjm-47-4-368
  43. Pilet, P.-E. and M. Saugy. 1987. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol. 83: 33-38 https://doi.org/10.1104/pp.83.1.33
  44. Prasad, M. N. V. and H. M. Freitas. 2003. Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 6: 285-321
  45. Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and $Cr^{6+}$ on the growth ofIndian mustard. Chemosphere 62: 741-748
  46. Reeves, R. D. and R. R. Brooks. 1983. European species of Thlaspi L.(Cruciferae) as indicators of nickel and zinc. J. Geochem. Explor. 18: 275-283 https://doi.org/10.1016/0375-6742(83)90073-0
  47. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  48. Salt, D. E., R. D. Smith, and J. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643-668 https://doi.org/10.1146/annurev.arplant.49.1.643
  49. Sekhar, K. C., C. T. Kamala, N. S. Chary, V. Balaram, and G. Garcia. 2005. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58: 507-514 https://doi.org/10.1016/j.chemosphere.2004.09.022
  50. Seong, K. Y. 1995. Factors influencing siderophore producing by plant growth promoting Rhizopseudomonas strains. J. Korean Soc. Soil Sci. Fert. 28: 287-294
  51. Shanahan, P., D. J. O'Sullivan, P. Simpson, J. D. Glennon, and F. O'Gara, 1992. Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358
  52. Tilak, K. V. B. R., N. Ranganayaki, K. K. Pal, R. De, A. K. Saxena, C. S. Nautiyal, S. Mittal, A. K. Tripathi, and B. N. Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89: 136-150
  53. Vivas. A.. B. Biro. J. M. Ruiz-Lozano. J. M. Barea. and R. Azcon, 2006. Two bacterial strains isolated from a Znpolluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62: 1523-1533 https://doi.org/10.1016/j.chemosphere.2005.06.053
  54. Wallace, J. 2001. Organic Field Crop Handbook. 2nd ed. Canadian Organic Growers Inc., Ottawa, Canada
  55. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52 (Roots special issue): 487-511
  56. Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71
  57. Yang, M. J., X. E. Yang, and V. Romheld. 2002. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity. J. Plant Nutr. 25: 1359-1375 https://doi.org/10.1081/PLN-120005395
  58. Yang, S. F. and N. E. Hoffinan. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155-89 https://doi.org/10.1146/annurev.pp.35.060184.001103
  59. Yang, X., Y. Feng, Z. He, and P. J. Stoffella. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 18: 339-353 https://doi.org/10.1016/j.jtemb.2005.02.007