Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung (Department of Microbiology, Pukyong National University) ;
  • Kim Gun-Do (Department of Microbiology, Pukyong National University) ;
  • Choi Tae-Jin (Department of Microbiology, Pukyong National University)
  • Published : 2006.06.01

Abstract

As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

Keywords

References

  1. Baumann, K., A. De Paolis, P. Costamtino, and G. Gualberti. 1998. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11: 323-334 https://doi.org/10.1105/tpc.11.3.323
  2. Cho, H. H., H. H. Park, J. O. Kim, and T. J. Choi. 2002. Isolation and characterization of Chlorella viruses from freshwater sources in Korea. Mol. Cells 142: 168-176
  3. Chen, F. and C. A. Suttle. 1995. Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. Environ. Microbiol. 61: 1274-1278
  4. Eom, H. S., S. H. Park, C. G. Lee, and E. S. Jin. 2005. Gene expression profiling of eukaryotic microalga, Haematococcus pluvialis. J. Microbial. Biotechnol. 15: 1060-1066
  5. Graves, M. V., D. E. Burbank, R. Roth, J. Heuser, P. L. DeAngelis, and J. L. Van Etten. 1999. Hyaluronan synthesis in virus PBCV-1 infected Chlorella-like green algae. Virology 257: 15-23 https://doi.org/10.1006/viro.1999.9628
  6. Grabhrr, R., P. Strasser, and J. L. Van Etten. 1992. The DNA polymerase gene from Chlorella viruses PBCV-1 and NY-2A contains an intron with nuclear splicing sequences. Virology 188: 721-731 https://doi.org/10.1016/0042-6822(92)90527-V
  7. Guillard, R. R. L. and J. H. Ryther. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J. Microbiol. 3: 229-239
  8. Hiramatsu, S., M. Ishihara, M. Fujle, S. Usami, and T. Yamada. 1999. Expression of a chitinase gene and lysis of the host cell wall during chlorella virus CVK2 infection. Virology 260: 308-315 https://doi.org/10.1006/viro.1999.9824
  9. Hiramatsu, S., M. Fujie, S. Usami, K. Sakai, and T. Yamada. 2000. Two catalytic domains of Chlorella virus CVK2 chitinase. J. Biosci. Bioeng. 89: 252-257 https://doi.org/10.1016/S1389-1723(00)88828-3
  10. Ho, C. K., J. L. Van Etten, and S. Shuman. 1997. Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J. Virol. 71: 1931-1937
  11. Kawasaki, T., K. Nishida, M. Fujie, S. Usami, and T. Yamada. 2000. Characterization of immediate early genes expressed in chlorovirus infection. Nucleic Acids Symp. Ser. 44: 161-162
  12. Kawasaki, T., M. Tanaka, K. Nishida, and T. Yamada. 2001. Regulatory mechanism of the gene expression during chlorovirus infection cycle. Nucleic Acid Res. Suppl. 1: 67-68 https://doi.org/10.1093/nass/1.1.67
  13. Kawasaki, T., M. Tanaka, M. Fujie, S. Usami, and T. Yamada. 2004. Immediated early genes expressed in chlorovirus infection. Virology 318: 214-223 https://doi.org/10.1016/j.virol.2003.09.015
  14. Kawata, T., A. Nakatsuka, T. Tabata, and M. Iwabuchi. 1989. Function of the hexameric sequence in the cauliflower mosaic virus 35S RNA promoter region. Biochem. Biophys. Res. Commun. 164: 387-393 https://doi.org/10.1016/0006-291X(89)91731-2
  15. Kim, D. H., Y. T. Kim, J. J. Cho, J. H. Bae, S. B. Hur, I. Hwang, and T. J. Choi. 2002. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol. 4: 63-73 https://doi.org/10.1007/s1012601-0070-x
  16. Landstein, D., M. Mincberg, S. Arad, and J. Tal. 1996. An early gene of the Chlorella virus PBCV-1 encodes a functional aspartate transcarbamylase. Virology 221: 151-158 https://doi.org/10.1006/viro.1996.0361
  17. Lavrukhin, O. V., J. M. Fortune, T. G. Wood, D. E. Burbank, J. L. Van Etten, N. Osheroff, and R. S. Lloyd. 2000. Topoisomerase II from Chlorella virus PBCV-1. Characterization of the smallest known type II topoisomerase. J. Biol. Chem. 275: 6915-6921 https://doi.org/10.1074/jbc.275.10.6915
  18. Lee, B.-Y., J.-H. Lee, H.-S. Yoon, K. H. Kang, K.-N. Kim, J.-H. Kim, J.-K. Kim, and J.-K. Kim. 2005. Expression of human interleukin-11 and granulocyte-macrophage colonystimulating factor in transgenic plants. J. Microbiol. Biotechnol. 15: 1304-1309
  19. Liu, Z. Z., J. L. Wang, X. Huang, W. H. Xu, Z. M. Liu, and R. X. Fang. 2003. The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216: 824-833
  20. Mergulhao, F. J. M., Gabriel A. Monteiro, Joaquim M. S. Cabral, and M. Angel Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14
  21. Mitra, A. and D. W. Higgins. 1994. The chlorella virus adenine methyltransferase gene promoter is a strong promoter in plants. Plant Mol. Biol. 26: 85-93 https://doi.org/10.1007/BF00039522
  22. Mitra, A., D. W. Higgins, and N. J. Rohe. 1994. A Chlorella virus gene promoter functions as a strong promoter both in plants and bacteria. Biochem. Biophys. Res. Comm. 204: 187-194 https://doi.org/10.1006/bbrc.1994.2443
  23. Nishida, K., T. Kawasaki, M. Fujie, S. Usami, and T. Yamada. 1999. Aminoacylation of tRNAs encoded by Chlorella virus CVK2. Virology 263: 220-229 https://doi.org/10.1006/viro.1999.9949
  24. Odell, J. T., F. Nagy, and N. H. Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812 https://doi.org/10.1038/313810a0
  25. Park, S. D., S. N. Lee, I. H. Park, J. S. Choi, W. K. Jeomg, and Y. H. Kim. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicun. J. Microbiol. Biotechnol. 14: 789-795
  26. Rothstein, S. J., K. N. Lahners, R. J. Lotstein, N. B. Carozzi, S. M. Jayne, and D. A. Rice. 1987. Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53: 154-161
  27. Sanders, P. R., J. A. Winter, A. R. Barnason, S. G. Rogers, and R. T. Fraley. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res. 15: 1543-1558 https://doi.org/10.1093/nar/15.4.1543
  28. Sandhu, J. S., C. I. Webster, and J. C. Gray. 1998. A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol. Biol. 37: 885-896 https://doi.org/10.1023/A:1006051832213
  29. Sanger, N., S. Daubect, and R. M. Goodman. 1990. Characteristics of a strong promoter from figwort mosaic virus: Comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol. Biol. 14: 433-443 https://doi.org/10.1007/BF00028779
  30. Schuster, A. M., L. Gilton, D. E. Burbank, and J. L. Van Etten. 1996. Infection of Chlorella-like algae with the virus PBCV-1: Translational studies. Virology 148: 181-189 https://doi.org/10.1016/0042-6822(86)90413-7
  31. Sorokin, C. and R. W. Krauss. 1958. The effect of light intensity on the growth rate of green algae. Plant Physiology 33: 109-113 https://doi.org/10.1104/pp.33.2.109
  32. Sun, L., B. Adams, J. R. Gurnon, Y. Ye, and J. L. Van Etten. 1999. Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. Virology 263: 376-387 https://doi.org/10.1006/viro.1999.9958
  33. Tyagi, A. K. 2001. Plant genes and their expression. Plant Molec. Biol. 80: 161-169
  34. Van Etten, J. L. 1995. Giant Chlorella viruses. Mol. Cells 5: 99-106
  35. Van Etten, J. L. 2003. Unusual life style of giant Chlorella viruses. Annu. Rev. Genet. 37: 153-195 https://doi.org/10.1146/annurev.genet.37.110801.143915
  36. Van Etten, J. L. and R. H. Meints. 1999. Giant viruses infecting algae. Annu. Rev. Microbiol. 53: 447-494 https://doi.org/10.1146/annurev.micro.53.1.447
  37. Van Etten, J. L., D. E. Burbank, D. Kuczmarski, and R. H. Meints. 1983. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219: 994-996 https://doi.org/10.1126/science.219.4587.994
  38. Van Etten, J. L., C. H. Van Etten, J. K. Johnson, and D. E. Burbank. 1985. A survey for viruses from fresh water that infect a eukaryotic Chlorella-like green alga. Appl. Environ. Microbiol. 49: 1326-1328
  39. Van Etten, J. L., D. E. Burbank, A. M. Schuster, and R. H. Meints. 1985. Lytic viruses infecting a Chlorella-like alga. Virology 140: 135-143 https://doi.org/10.1016/0042-6822(85)90452-0
  40. Van Etten, J. L., D. E. Burbank, Y. Xia, and R. H. Meints. 1983. Growth cycle of a virus, PBCV-1, that infects Chlorellalike algae. Virology 126: 117-125 https://doi.org/10.1016/0042-6822(83)90466-X
  41. Van Etten, J. L., R. H. Meints, D. E. Burbank, D. Kuczmarski, D. A. Cuppels, and L. C. Lane. 1981. Isolation and characterization of a virus from the intracellular green alga symbiotic with Hydra viridis. Virology 113: 704-711 https://doi.org/10.1016/0042-6822(81)90199-9
  42. Van Etten, J. L., M. V. Graves, D. G. Muller, W. Boland, and N. Delaroque. 2002. Phycodnaviridae - large DNA algal viruses. Arch. Virol. 147: 1479-1516 https://doi.org/10.1007/s00705-002-0822-6
  43. Xia, Y. and J. L. Van Etten. 1986. DNA methyltransferase induced by PBCV-1 virus infection of a Chlorella-like green alga. Mol. Cell. Biol. 6: 1440-1445 https://doi.org/10.1128/MCB.6.5.1440
  44. Yamada, T., S. Hiramatsu, P. Songsri, and M. Fujie. 1997. Alternative expression of a chitosanase gene produces two different proteins in cells infected with Chlorella virus CVK2. Virology 230: 361-368 https://doi.org/10.1006/viro.1997.8486
  45. Ying, C., W. Yiqin, S. Yongru, Z. Liming, and L. Wenbin. 2001. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr. Genet. 36: 365-370
  46. Wissenbach, M., B. Uberlacker, F. Vogt, D. Becker, F. Salamini, and W. Rohde. 1993. Myb genes from Hordeum vulgare: Tissue specific expression of chimeric Myb promoter Gus genes in transgenic tobacco. Plant J. 4: 411-422 https://doi.org/10.1046/j.1365-313X.1993.04030411.x
  47. Zhang, Y., M. Nelson, J. Nietfeldt, Y. Xia, D. E. Burbank, S. Ropp, and J. L. Van Etten. 1998. Chlorella virus NY-2A encodes at least twelve DNA endonuclease/methyltransferase genes. Virology 240: 336-375
  48. Zhang, Y., I. Calin-Jageman, J. R. Gurnon, T. J. Choi, B. Adams, A. W. Nicholson, and J. L. Van Etten. 2003. Characterization of a Chlorella virus PBCV-1 encoded ribonuclease III. Virology 317: 73-83 https://doi.org/10.1016/j.virol.2003.08.044