Identification of Proteins Affected by Iron in Saccharomyces cerevisiae Using Proteome Analysis

  • Lieu Hae-Youn (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Song Hyung-Seok (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Yang Seung-Nam (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim Jae-Hwan (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim Hyun-Joong (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Park Young-Doo (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Park Cheon-Seok (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim Hae-Yeong (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
  • Published : 2006.06.01

Abstract

To study the effect of iron on Saccharomyces cerevisiae, whole-cell proteins of Saccharomyces cerevisiae were extracted and subjected to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and differentially expressed proteins were identified. The proteins separated were further identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and were compared with a protein database. Of more than 300 spots separated by molecular weight and isoelectric points, 27 differentially expressed spots were identified. Ten proteins were found to be differentially expressed at high iron concentration. Triosephosphate isomerase (TPI), YDR533C hypothetical protein, superoxide dismutase (SOD), 60 kDa heat-shock protein (HSP60), pyruvate dehydrogenase beta subunit 1 (PDB1), and old yellow enzyme 2 (OYE2) were upregulated, whereas thiol-specific antioxidant (TSA), regulatory particle non-ATPase subunit 8 (RPN8), thiol-specific peroxiredoxin 1 (AHP1), and fructose-1, 6-bisphosphate adolase (FBA) were downregulated by iron. Based on the result, we propose that SOD upregulated by iron would protect the yeast from oxidative stress by iron, and that TSA downregulated by iron would render cells hypersensitive to oxidative stress.

Keywords

References

  1. Barisani, D., R. Meneveri, E. Ginelli, C. Cassani, and D. Conte. 2002. Iron overload and gene expression in HepG2 cells: Analysis by differential display. FEBS Lett. 469: 208-212 https://doi.org/10.1016/S0014-5793(00)01280-1
  2. Boucherie, H. 1985. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J. Bacteriol. 161: 385-392
  3. Crichton, R. R., S. Wilmet, R. Legssyer, and R. J. Ward. 2002. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem. 91: 9-18 https://doi.org/10.1016/S0162-0134(02)00461-0
  4. Dani, V., W. J. Simon, M. Duranti, and R. R. D. Croy. 2005. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5: 737-745 https://doi.org/10.1002/pmic.200401119
  5. Foury, F. and D. Talibi. 2001. Mitochondrial control of iron homeostasis: A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem. 276: 7762-7768 https://doi.org/10.1074/jbc.M005804200
  6. Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver. 1996. Life with 6000 genes. Science 274: 546-547 https://doi.org/10.1126/science.274.5287.546
  7. Gygi, S. P., Y. Rochon, B. R. Franza, and R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720-1730 https://doi.org/10.1128/MCB.19.3.1720
  8. Harder, A., R. Wildgruber, A. Nawrocki, S. J. Fey, P. M. Larsen, and A. Gorg. 1999. Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20: 826-829 https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<826::AID-ELPS826>3.0.CO;2-A
  9. Hart, P. J., M. M. Balbirnie, N. L. Ogihara, A. M. Nersissian, M. S. Weiss, J. S. Valentine, and D. Eisenberg. 1999. A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry 38: 2167-2178 https://doi.org/10.1021/bi982284u
  10. Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
  11. Kim, Y. C., C. S. Kim, B. H. Cho, and A. J. Anderson. 2004. Major Fe-superoxide dismutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutrient limitation. J. Microbiol. Biotechnol. 14: 859-862
  12. Lee, J. L., S. N. Yang, C. S. Park, D. I. Jeoung, and H. Y. Kim. 2004. Purification and glycosylation pattern of human L-ferritin in Pichia pastoris. J. Microbiol. Biotechnol. 14: 68-73
  13. Lopez, M. A. and F. C. Martos. 2004. Iron availability: An updated review. Int. J. Food Sci. Nutr. 55: 597-606 https://doi.org/10.1080/09637480500085820
  14. Molloy, M. P., N. D. Phadke, J. R. Maddock, and P. C. Andrews. 2001. Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22: 1686-1696 https://doi.org/10.1002/1522-2683(200105)22:9<1686::AID-ELPS1686>3.0.CO;2-L
  15. Niino, Y. S., S. Chakraborty, B. J. Brown, and V. Massey. 1995. A new old yellow enzyme of Saccharomyces cerevisiae. J. Biol. Chem. 270: 1983-1991 https://doi.org/10.1074/jbc.270.5.1983
  16. Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723-5732 https://doi.org/10.1074/jbc.275.8.5723
  17. Park, S., M. Lee, H. Y. Kim, and D. I. Jeoung. 2002. Proteome analysis of 5-fluorouracil-resistance-associated protein in human gastric cancer cells. Biotechnol. Lett. 24: 1141-1145 https://doi.org/10.1023/A:1016122716886
  18. Park, Y. S., C. W. Yun, J. Y. Kong, T. H. Kim, and H. C. Sung. 2004. High copy Rme1p suppresses iron-induced cell growth defect of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 470-473
  19. Slekar, K. H., D. J. Kosman, and C. Culotta. 1996. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271: 28831-28836 https://doi.org/10.1074/jbc.271.46.28831
  20. Trotter, E. W., C. M. F. Kao, L. Berenfeld, D. Botstein, G. A. Petsko, and J. V. Gray. 2002. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 277: 44817-44825 https://doi.org/10.1074/jbc.M204686200
  21. Van Ho, A., D. M. Ward, and J. Kaplan. 2002. Transition metal transport in yeast. Annu. Rev. Microbiol. 56: 237-261 https://doi.org/10.1146/annurev.micro.56.012302.160847
  22. Vido, K., D. Spector, G. Lagniel, S. Lopez, M. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474 https://doi.org/10.1074/jbc.M008708200
  23. Wodicka, L., H. Dong, M. Mittmann, M. H. Ho, and D. J. Lockhart. 1997. Genomewide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15: 1359-1367 https://doi.org/10.1038/nbt1297-1359
  24. Ye, Z. and J. R. Connor. 2000. Identification of iron responsive genes by screening cDNA libraries from suppression subtractive hybridization with antisense probes from three iron conditions. Nucleic Acids Res. 28: 1802-1807 https://doi.org/10.1093/nar/28.8.1802
  25. Yim, M. B., H. Z. Chae, S. G. Rhee, P. B. Chock, and E. R. Stadtman. 1994. On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J. Biol. Chem. 269: 1621-1626