S-Adenosylmethionine (SAM) Regulates Antibiotic Biosynthesis in Streptomyces spp. in a Mode Independent of Its Role as a Methyl Donor

  • Zhao Xin-Qing (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University) ;
  • Jin Ying-Yu (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University) ;
  • Kwon Hyung-Jin (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University) ;
  • Yang Young-Yell (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University) ;
  • Suh Joo-Won (Institute of Bioscience & Biotechnology and Department of Biological Science, Myong Ji University)
  • 발행 : 2006.06.01

초록

S-Adenosylmethionine (SAM) is a ubiquitous biomolecule serving mainly as a methyl donor. Our recent studies revealed that SAM controls antibiotic production in Streptomyces. In this study, the functional mode of SAM was studied in S. coelicolor and S. antibioticus ATCC11891, employing S-adenosylhomocysteine (SAH), a methylation reaction product of SAM. Actinorhodin biosynthesis did not require SAM as a methyl donor, whereas SAH enhanced the actinorhodin biosynthesis up to the level comparable to SAM, and the most effective concentration of SAH was higher than that of SAM. In the case of oleandomycin that requires SAM for its biosynthesis, both SAM and SAH at the concentration as low as 100 mM showed comparable efficacy in enhancing the production; SAM at 1 mM concentration additionally stimulated to give a 5-fold enhancement of oleandomycin production. In vitro autophosphorylation of protein kinase AfsK was found to be activated by both SAM and SAH, as well as other structurally related compounds. Our studies demonstrate that SAM regulates antibiotic biosynthesis in a mode independent of its role as a methyl donor and suggest that SAM acts directly as an intracellular signaling molecule for Streptomyces.

키워드

참고문헌

  1. Cai, J. X., W. M. Sun, J. J. Hwang, S. C. Stain, and S. C. Lu. 1996. Changes in S-adenosylmethionine synthetase in human liver cancer: Molecular characterization and significance. Hepatology 24: 1090-1097 https://doi.org/10.1002/hep.510240519
  2. Chiang, P. K., R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. McCann. 1996. S-Adenosylmethionine and methylation. FASEB J. 10: 471-480 https://doi.org/10.1096/fasebj.10.4.8647346
  3. Demain, A. L. 1998. Microbial natural products: Alive and well in 1998. Nat. Biotechnol. 16: 3-4 https://doi.org/10.1038/nbt0198-3
  4. Fontecave, M., M. Atta, and E. Mulliez. 2004. Sadenosylmethionine: Nothing goes to waste. Trends. Biochem. Sci. 29: 243-249 https://doi.org/10.1016/j.tibs.2004.03.007
  5. Gaisser, S., R. Lill, G. Wirtz, F. Grolle, J. Staunton, and P. F. Leadlay. 2001. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster. Mol. Microbiol. 41: 1223-1231 https://doi.org/10.1046/j.1365-2958.2001.02594.x
  6. Hilti, N., R. Graub, M. Jorg, P. Arnold, A. M. Schweingruber, and M. E. Schweingruberr. 2000. Gene sam1 encoding adenosylmethionine synthase: Effects of its expression in the fission yeast Schizosaccharomyces pombe. Yeast 16: 1-10 https://doi.org/10.1002/(SICI)1097-0061(20000115)16:1<1::AID-YEA501>3.0.CO;2-K
  7. Jo, Y. Y., J. Liu, Y. Y. Jin, Y. Y. Yang, and J. W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Sreptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496
  8. Kieser, T., M. J. Bibb, M. J. Butter, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England
  9. Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally integrated antibiotic regulatory gene of afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  10. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600 https://doi.org/10.1128/JB.185.2.592-600.2003
  11. Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430 https://doi.org/10.1046/j.1365-2958.2002.02840.x
  12. Newman, E. B., L. I. Budman, E. C. Chan, R. C. Greene, R. T. Lin, C. L. Woldringh, and R. D'Ari. 1998. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J. Bacteriol. 180: 3614-3619
  13. Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609 https://doi.org/10.1128/JB.185.2.601-609.2003
  14. OH, S. H. and K. F. Chater. 1997. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): Possible relevance to other organisms. J. Bacteriol. 179: 122-127 https://doi.org/10.1128/jb.179.1.122-127.1997
  15. Park, H. S., S. K. Shin, Y. Y. Yang, H. J. Kwon, and J. W. Suh. 2005. Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol. Lett. 249: 199-206 https://doi.org/10.1016/j.femsle.2005.05.047
  16. Rhee, K. H. 2002. Inhibition of DNA topoisomerase I by cyclo ($_L$-prolyl-$_L$-phenylalanyl) isolated from Streptomyces sp. AMLK-335. J. Microbiol. Biotechnol. 12: 1013-1016
  17. Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  18. Rodriguez, L., D. Rodriguez, C. Olano, A. F. Brana, C. Mendez, and J. A. Salas. 2001. Functional analysis of OleY $_L$-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in Streptomyces antibioticus. J. Bacteriol. 183: 5358-5363 https://doi.org/10.1128/JB.183.18.5358-5363.2001
  19. Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  20. Sekurova, O. N., T. Brautaset, H. Sletta, S. E. F. Borgos, O. M. Jakobsen, T. E. Ellingsen, A. R. Strom, S. Valla, and S. B. Zotchev. 2004. In vivo analysis of the regulatory genes in the nystatin biosynthesis gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J. Bacteriol. 186: 1345-1354 https://doi.org/10.1128/JB.186.5.1345-1354.2004
  21. Shelly, C. Lu. 2000. S-Adenosylmethionine. Int. J. Biochem. Cell Biol. 32: 391-395 https://doi.org/10.1016/S1357-2725(99)00139-9
  22. Shen, B., C. Li, and M. C. Tarczynski. 2002. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-$_L$-methionine synthetase 3 gene. Plant J. 29: 371-380 https://doi.org/10.1046/j.1365-313X.2002.01221.x
  23. Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292 https://doi.org/10.1099/00221287-145-9-2281
  24. Umeyama, T., P. C. Lee, and S. Horinouchi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425 https://doi.org/10.1007/s00253-002-1045-1
  25. Umeyama, T. and S. Horinouchi. 2001. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J. Bacteriol. 183: 5506-5512 https://doi.org/10.1128/JB.183.19.5506-5512.2001
  26. Vilches, C., C. Mendez, C. Hardisson, and J. A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136: 1447-1454 https://doi.org/10.1099/00221287-136-8-1447
  27. Wei, Y. H. and E. B. Newman. 2002. Studies on the role of the metK gene product of Escherichia coli K-12. Mol. Microbiol. 43: 1651-1656 https://doi.org/10.1046/j.1365-2958.2002.02856.x
  28. Yocum, R. R., J. B. Perrkins, C. L. Howitt, and J. Pero. 1996. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis. J. Bacteriol. 178: 4604-4610 https://doi.org/10.1128/jb.178.15.4604-4610.1996
  29. Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase, 2005. J. Microbiol. Biotechnol. 15: 346-353