Proteomic Analysis of Resting and Activated Human $CD8^+$ T Cells

  • Koo Jung-Hui (Department of Biochemistry, Protein Network Research Center, Yonsei University) ;
  • Chae Wook-Jun (Department of Biotechnology, Yonsei University) ;
  • Choi Je-Min (Department of Biochemistry, Yonsei University) ;
  • Nam Hyung-Wook (Department of Biochemistry, Protein Network Research Center, Yonsei University) ;
  • Morio Tomohiro (Department of Pediatrics, Tokyo Medical and Dental University, School of Medicine) ;
  • Kim Yu-Sam (Department of Biochemistry, Protein Network Research Center, Yonsei University) ;
  • Jang Yang-Soo (Cardiovascular Center, Yonsei University) ;
  • Choi Kwan-Yong (Department of Life Science, Pohang University of Science and Technology) ;
  • Yang Jung-Jin (School of Computer Science and Information Engineering, The Catholic University of Korea) ;
  • Lee Sang-Kyou (Department of Biotechnology, Yonsei University)
  • Published : 2006.06.01

Abstract

[ $CD8^+$ ] T Iymphocytes with the cytotoxic activity and capability to release various cytokines are the major players in immune responses against viral infection and cancer. To identify the proteins specific to resting or activated human CD8$^+$ T cells, human CD8$^+$ T cells were activated with anti-CD3+anti-CD28 mAb in the presence of IL-2. The solubilized proteins from resting and activated human CD8$^+$ T cells were separated by high-resolution two-dimensional polyacrylamide gel electrophoresis, and their proteomes were analyzed. Proteomic analysis of resting and activated T cells resulted in identification of 35 proteins with the altered expression. Mass spectrometry coupled with Profound and SWISS-PROT database analysis revealed that these identified proteins are to be functionally associated with cell proliferation, metabolic pathways, antigen presentation, and intracellular signal transduction pathways. We also identified six unknown proteins predicted from genomic DNA sequences specific to resting or activated CD8$^+$ T cells. Protein network studies and functional characterization of these novel proteins may provide new insight into the signaling transduction pathway of CD8$^+$ T cell activation.

Keywords

References

  1. Alegre, M.-L., K. A. Frauwirth, and C. B. Thompson. 2001. T-Cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1: 220-228 https://doi.org/10.1038/35105024
  2. Butler, J. J., J. S. Mader, C. L. Watson, H. Zhang, J. Blay, and D. W. Hoskin. 2003. Adenosine inhibits activationinduced T cell expression of CD2 and CD28 costimulatory molecules: Role of interleukin-2 and cyclic AMP signaling pathways. J. Cell. Biochem. 89: 975-991 https://doi.org/10.1002/jcb.10562
  3. Faure, S., L. I. Salazar-Fontana, M. Semichon, V. L. Tybulewicz, G. Bismuth, A. Trautmann, R. N. Germain, and J. Delon. 2004. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol. 5: 272-279 https://doi.org/10.1038/ni1039
  4. Hutloff, A., A. M. Dittrich, K. C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopouls, and R. A. Kroczek. 1999. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397: 263-266 https://doi.org/10.1038/16717
  5. Kagey, M. H., T. A. Melhuish, and D. Wotton. 2003. The polycomb protein Pc2 is a SUMO E3. Cell 113: 127-137 https://doi.org/10.1016/S0092-8674(03)00159-4
  6. Kang, K. Y., C. H. Choi, J. Y. Oh, H. Kim, G. R. Kweon, and J. C. Lee. 2005. Chloramphenicol arrests transition of cell cycle and induces apoptotic cell death in myelogenous leukemia cells. J. Microbiol. Biotechnol. 15: 913-918
  7. Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
  8. Lee, H. Y., J. H. Park, S. H. Seok, S. A. Cho, M. W. Baek, D. J. Kim, Y. H. Lee, and J. H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol. 14: 167-170
  9. Levine, S. S., A. Weiss, H. Erdjument-Bromage, Z. Shao, P. Tempst, and R. E. Kinston. 2002. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22: 6070-6078 https://doi.org/10.1128/MCB.22.17.6070-6078.2002
  10. Liu, K., M. Catalfamo, Y. Li, P. A. Henkart, and N.-P. Weng. 2002. IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in $CD8^+$ memory T cells. Proc. Natl. Acad. Sci. USA 99: 6192-6197
  11. Madsen, P., H. H. Rasmussen, H. Leffers, B. Honore, and J. E. Celis. 1992. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J. Invest. Dermatol. 99: 299-305 https://doi.org/10.1111/1523-1747.ep12616641
  12. Nandi, D., H. Jiang, and J. J. Monaco. 1996. Identification of MECL-1 (LMP10) as the third IFN-${\gamma}$-inducible proteasome subunit. J. Immunol. 156: 2361-2364
  13. Nilges, K., H. Hohn, H. Pilch, C. Neukirch, K. Freitag, P. J. Talbot, and M. J. Maeurer. 2003. Human papillomavirus type 16 E7 peptide-directed $CD8^+$ T cells from patients with cervical cancer are cross-reactive with the coronavirus NS2 protein. J. Virol. 77: 5464-5474 https://doi.org/10.1128/JVI.77.9.5464-5474.2003
  14. Orlando, V. 2003. Polycomb, epigenomes, and control of cell identity. Cell 112: 599-606 https://doi.org/10.1016/S0092-8674(03)00157-0
  15. Rautajoki, K., T. A. Nyman, and R. Lahesmaa. 2004. Proteome characterization of human T helper 1 and 2 cells. Proteomics 4: 84-92 https://doi.org/10.1002/pmic.200300510
  16. Riggs, D. L., P. J. Roberts, S. C. Chirillo, J. Cheung-Flynn, V. Prapapanich, T. Ratajczak, R. Gaber, D. Picard, and D. F. Smith. 2003. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22: 1158-1167 https://doi.org/10.1093/emboj/cdg108
  17. Rubin, B. Y., S. L. Anderson, L. Xing, R. J. Powell, and W. P. Tate. 1991. Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J. Biol. Chem. 266: 24245-24248
  18. Ruse, M., A. M. Broome, and R. L. Eckert. 2003. S100A7 (Psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes. J. Invest. Dermatol. 121: 132-141 https://doi.org/10.1046/j.1523-1747.2003.12309.x
  19. Salazar-Fontana, L. I. and B. E. Bierer. 2001. T-lymphocyte coactivator molecules. Curr. Opin. Hematol. 8: 5-11 https://doi.org/10.1097/00062752-200101000-00002
  20. Sansom, D. M. 2000. CD28, CTLA-4 and their ligands: Who does what and to whom? Immunology 101: 169-177 https://doi.org/10.1046/j.1365-2567.2000.00121.x
  21. Satijn, D. P., D. J. Olson, J. van der Vlag, K. M. Hamer, C. Lambrechts, H. Masselink, M. J. Gunster, R. G. Sewalt, R. van Driel, and A. P. Otte. 1997. Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell. Biol. 17: 6076-6086 https://doi.org/10.1128/MCB.17.10.6076
  22. Selin, L. K., M. Y. Lin, K. A. Kraemer, J. P. Schneck, D. Pardoll, S. M. Varga, P. A. Santolucito, A. K. Pinto, and R. M. Welsh. 1999. Attrition of T cell memory: Selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11: 733-742 https://doi.org/10.1016/S1074-7613(00)80147-8
  23. Selin, L. K., S. M. Varga, I. C. Wong, and R. M. Welsh. 1998. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J. Exp. Med. 188: 1705-1715 https://doi.org/10.1084/jem.188.9.1705
  24. Sharpe, A. H. and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126 https://doi.org/10.1038/nri727
  25. Tai, P. K., M. W. Albers, H. Chang, L. E. Faber, and S. L. Schreiber. 1992. Association of a 59 kDa immunophilin with the glucocorticoid receptor complex. Science 256: 1315-1318 https://doi.org/10.1126/science.1376003
  26. Verdeil, G., D. Puthier, C. Nguyen, A.-M. Schmitt-Verhulst, and N. Auphan-Anezin. 2002. Gene profiling approach to establish the molecular bases for partial versus full activation of naive CD8 T lymphocytes. Ann. N.Y. Acad. Sci. 975: 68-76 https://doi.org/10.1111/j.1749-6632.2002.tb05942.x
  27. Vuadens, F., D. Gasparini, C. Deon, J.-C. Sanchez, D. F. Hochstrasser, P. Schneider, and J.-D. Tissot. 2001. Identification of specific proteins in different lymphocyte populations by proteomic tools. Proteomics 2: 105-111 https://doi.org/10.1002/1615-9861(200201)2:1<105::AID-PROT105>3.0.CO;2-F
  28. Wadle, A., G. Thiel, A. Mischo, V. Jung, M. Pfreundschuh, and C. Renner. 2001. Chromosomal localization and promoter analysis of the adenomatous polyposis coli binding protein RP1. Oncogene 20: 5920-5929 https://doi.org/10.1038/sj.onc.1204797
  29. Walsh, C. M., M. Matloubian, C. C. Liu, R. Ueda, C. G. Kurabara, J. L. Christensen, M. T. Huang, J. D. Young, R. Ahmed, and W. R. Clark. 1994. Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. USA 91: 10854-10858
  30. Yan, J. X., R. Wait, T. Berkelman, R. A. Harry, J. A. Westbrook, C. H. Wheeler, and M. J. Dunn. 2000. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21: 3666-3672 https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6
  31. Yim, S. B. and Y. H. Chung. 2004. Construction and production of concatameric human TNF receptor-immunoglobulin fusion proteins. J. Microbiol. Biotechnol. 14: 81-89
  32. Zabazarnykh, M. Y. and D. Y. Litvinov. 2003. Phorbol ester stimulates expression of the human tryptophanyl-tRNA synthetase gene. Biochemistry (Mosc) 68: 482-486 https://doi.org/10.1023/A:1023668417632