DOI QR코드

DOI QR Code

Characterization of Arabidopsis Histidine Kinase 3 and Proteomic Analysis of Its Mutant

애기장대 histidine kinase 3 (AHK3)의 특성과 결손돌연변이체인 ahk3의 프로테옴 분석

  • Liang Ying-Shi (Division of Applied Life Science, Gyeongsang National University) ;
  • Cha Joon-Yung (Division of Applied Life Science, Gyeongsang National University) ;
  • Ermawati Netty (Division of Applied Life Science, Gyeongsang National University) ;
  • Jung Min-Hee (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee Kon-Ho (Division of Applied Life Science, Gyeongsang National University) ;
  • Son Dae-Young (Division of Applied Life Science, Gyeongsang National University)
  • 양영실 (경상대학교 대학원 응용생명과학부) ;
  • 차준영 (경상대학교 대학원 응용생명과학부) ;
  • 네티 엘마와티 (경상대학교 대학원 응용생명과학부) ;
  • 정민희 (경상대학교 대학원 응용생명과학부) ;
  • 이곤호 (경상대학교 대학원 응용생명과학부) ;
  • 손대영 (경상대학교 대학원 응용생명과학부)
  • Published : 2006.06.01

Abstract

Histidine kinase plays important roles in signal transduction in plant. We characterized the function of Arabidopsis histidine kinase 3 (AHK3) and analyzed the expression patterns of genes and proteins in its mutant ahk3 by trans-zeatin (t-zeatin). The ahk3 exhibited decreased sensitivity to t-zeatin during callus formation, seedling growth, and leaf senescence. From proteomic analysis of ahk3, eukaryotic translation initiation factor 5A-2, auxin binding glutathione S-transferase, and NDPK1 were identified not to be induced by t-zeatin, when compared to the wild-type. In addition, the expression levels of ARR4 and ARR16 among A-type response regulators (ARRs) markedly decreased in ahk3 by t-zeatin treatment. These results suggest that AHK3 plays an important role in cytokinin signaling and the proteins identified from proteomic analysis and specific ARRs, ARR4 and ARR16 may be directly or indirectly associated in AHK3-mediated cytokinin signaling.

Histidine kinase는 식물의 신호전달기작에서 매우 중요한 역할을 한다. 본 연구에서는 애기장대 histidine kinase 3 (AHK3)의 식물체내에서의 기능을 조사하였으며 이 유전자의 결손 돌연변이체인 ahk3에 trans-zeatin (t-zeatin)을 처리하여 유전자와 단백질의 발현양상을 분석하였다. ahk3는 야생형 식물체에 비하여 캘러스 형성, 유모의 성장, 잎의 노화과정에서 t-zeatin에 대한 감수성이 줄어들었다. 프로테옴 분석 결과 eukaryotic translation initiation factor 5A-2, auxin binding glutathione S-transferase, NDPK1 등은 야생형의 애기장대에서는 t-zeatin에 의하여 발현이 증가하는 반면 ahk3에서는 증가하지 않는 것으로 나타났다. 또한 cytokinin처리에 의하여 발현이 증가하는 것으로 보고된 A-type response regulator들 중에서 ARR4와 ARR16의 발현양이 ahk3에서는 현저하게 감소하는 것으로 나타났다. 이러한 결과들은 AHK3가 cytonin신호전달기작에서 매우 중요한 역할을 하며, 프로테옴 분석에 의하여 동정된 단백질들과 ARR4, ARR16은 AHK3에 의해 매개되는 cytokinin 신호전달과정에서 중요한 역할을 할 것으로 생각된다.

Keywords

References

  1. Blum, H., H. Beier and H. J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99 https://doi.org/10.1002/elps.1150080203
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Choi, G., H. Yi, J. Lee, Y. K. Kwon, M. S. Soh, B. Shin, Z. Luka, T. R. Hahn and P. S. Song. 1999. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610-613 https://doi.org/10.1038/44176
  4. D'Agostino, I. B., J. Deruere and J. J. Kieber. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124, 1706-1717 https://doi.org/10.1104/pp.124.4.1706
  5. Dixon, D. P., A. Lapthorn and R. Edwards. 2002. Plant glutathione transferases. Genome Biol. 3, REVIEWS 3004.1- 3004.10
  6. Gan, S and R. M. Amasino. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986-1988 https://doi.org/10.1126/science.270.5244.1986
  7. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  8. Higuchi, M., M. S. Pischke, A. P. Mahonen, K. Miyawaki, Y. Hashimoto, M. Seki, M. Kobayashi, K. Shinozaki, T. Kato, S. Tabata, Y. Helariutta, M. R. Sussman and T. Kakimoto. 2004. TIn planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101, 8821-8826
  9. Hwang, I., H. C. Chen and J, Sheen. 2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500-515 https://doi.org/10.1104/pp.005504
  10. Jenkins, Z. A., P. G. Haag and H. E. Johansson. 2001. Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics 71, 101-109 https://doi.org/10.1006/geno.2000.6418
  11. Kakimoto, T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982-985 https://doi.org/10.1126/science.274.5289.982
  12. Kiba, T., H. Yamada and T. Mizuno. 2002. Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol. 43, 1059-1066 https://doi.org/10.1093/pcp/pcf121
  13. Kim, S. T., K. S. Cho, Y. S. Jang and K. Y. Kang. 2001. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22, 2103-2109 https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  14. Laval-Martin, D. L. 1985. Spectrophotometric method of controlled pheophytinization for the determination of both chlorophylls and pheophytins in plant extracts. Anal. Biochem. 149, 121-129 https://doi.org/10.1016/0003-2697(85)90484-1
  15. Miller, C. O., F. Skoog, F. S. Okumura, M. H. von Saltza and F. M. Strong. 1956. Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78, 1375-1380 https://doi.org/10.1021/ja01588a032
  16. Mok, D. W. S and M, C. Mok. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 89-118 https://doi.org/10.1146/annurev.arplant.52.1.89
  17. Moon. H., B. Lee, G. Choi, D. Shin, D. T. Prasad, O. Lee, S. S. Kwak, D. H. Kim, J. Nam, J. Bahk, J. C. Hong, S. Y. Lee, M. J. Cho, C. O. Lim and D. J. Yun. 2003. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100, 358-363
  18. Nishimura. C., Y. Ohashi, S. Sato, T. Kato, S. Tabata and C. Ueguchi. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365-1377 https://doi.org/10.1105/tpc.021477
  19. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021
  20. Postel, E. H. 1998. NM23-NDP kinase. Int. J. Biochem. Cell Biol. 30, 1291-1295 https://doi.org/10.1016/S1357-2725(98)00087-9
  21. Thompson, J. E., M. T. Hopkins, C. Taylor and T. W. Wang. 2004. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9, 174-179 https://doi.org/10.1016/j.tplants.2004.02.008
  22. Ueguchi. C., H. Koizumi, T. Suzuki and T. Mizuno. 2001. Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42, 231-235 https://doi.org/10.1093/pcp/pce015
  23. Urao. T., K. Yamaguchi-Shinozaki and K. Shinozaki. 2000. Two-component systems in plant signal transduction. Trends Plant Sci. 5, 67-74 https://doi.org/10.1016/S1360-1385(99)01542-3
  24. Yamada, H., T. Suzuki, K. Terada, K. Takei, K. Ishikawa, K. Miwa, T. Yamashino and T. Mizuno. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42, 1017-1023 https://doi.org/10.1093/pcp/pce127
  25. Zettl. R., J. Schell and K. Palme. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by $5-azido-[7-^3H]indole-3-acetic$ acid: identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. USA 91, 689-693
  26. Zimmermann, S., A. Baumann, K. Jaekel, I. Marbach, D. Engelberg and H. Frohnmeyer. 1999. UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J. Biol. Chem. 274, 17017-17024 https://doi.org/10.1074/jbc.274.24.17017