DOI QR코드

DOI QR Code

Analysis of Microsatellite Markers for Forensic Identification in cats

고양이의 개체식별을 위한 microsatellite marker 분석

  • Cho Gil-Jae (College of Veterinary Medicine, Kyungpook National University)
  • Published : 2006.06.01

Abstract

A total number of 20 cat samples including 8 parentage testing and 12 individual identification were genotyped. Genomic DNA was extracted from buccal swab, and genotyped by using 10 microsatellite markers (FCA005, FCA26, FCA224, FCA240, FCA453, FCA293, FCA075, FCA105, FCA229, and FCA651). This method consisted of single PCR procedure and showed reasonable amplification of all PCR products. Genotypes were determined by genetic analyzer. The number of alleles per locus of cats varied from 3 to 8 with a mean value of 5.5. Expected heterozygosity was ranged from 0.390 to 0.827 (mean 0.639) and the total exclusion probability of 10 microsatellite loci was 0.9441. Of the 10 markers, FCA240 marker has relatively high PIC value (>0.7). Of the 8 cats, 7 cats were qualified by compatibility according to the Mendelism. These results can give basic information for developing parentage verification and individual identification system in cat.

고양이의 혈통 등록을 위한 개체식별 및 친자판정을 목적으로 microsatellite DNA다형을 조사한 결과 다음과 같은 성적을 얻었다. 고양이 20두를 대상으로 microsatellite DNA다형의 대립유전자를 조사한 본 연구에서는 관찰된 대립유전자의 수는 $3{\sim}8$개 (평균 5.5개)이며 marker별 대립유전자는 FCA005 142bp (0.3750), FCA026 148 bp (0.5500), FCA075 136 bp (0.5000), FCA105 191 bp (0.4250), FCA224 156 bp (0.7750), FCA229 166 bp (0.6500), FCA240 163 bp (0.3000), FCA293 185 bp (0.5000), FCA453 186 bp (0.5500), FCA651 134 bp (0.6750) 대립유전자가 높은 빈도로 관찰되었다. Expected heterozygosity와 PIC는 각각 $0.390{\sim}0.827$(평균 0.639), $0.357{\sim}0.780$(평균 0.581)으로 나타났고 FCA240의 marker는 PIC value가 0.70 이상이었다. 또한 PE는 $0.076{\sim}0.444$으로서 10개 marker를 조합시 total PE는 0.9441로 관찰되었다. 10개의 microsatellite DNA다형 좌위를 가지고 친자관계를 분석한 결과 8두 중에서 1두(12.50%)가 모순으로 판정되었다. 또한 국내에서 사육중인 고양이의 개체식별 및 친자판정에 microsatellite marker를 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Bowling, A. T., M. L. Eggleston-Scott, G. Byrns, R. S. Clark, S. Dileanis and E. Wictum. 1997. Validation of microsatellite markers for routine horse parentage testing. Anim. Genet. 28, 247-252 https://doi.org/10.1111/j.1365-2052.1997.00123.x
  2. Cho, G. J. 2005. Microsatellite polymorphism and genetic relationship in dog breeds in Korea. Asian-Aust. J. Anim. Sci. 18, 1071-1074
  3. Cho, G. J. and B. W. Cho. 2003. Validation of microsatellite markers for routine canine parentage testing in Korea. Korean J. Genet. 25, 103-108
  4. Cho, G. J., B. W. Cho, S. K. Kim, K. W. Lee and Y. K. Kim. 2003. Analysis of microsatellite DNA polymorphism for parentage testing in dog breeds. J. Anim. Sci. & Technol. (Kor.). 45, 191-198
  5. Cho, G. J., Y. J. Yang, K. S. Kang and B. W. Cho. 2002. Genetic diversity and validation of microsatellite markers for Jeju native horse parentage testing. Korean J. Genet. 24, 359-365
  6. Dimsoski, P. 2003. Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses. Croatian Medical J. 44, 332-335
  7. Fredhol, M. and Wintero, A. K. 1996. Efficient resolution of parentage in dogs by amplification of microsatellites. Anim. Genet. 27, 19-23 https://doi.org/10.1111/j.1365-2052.1996.tb01172.x
  8. Glowatzki-Mullis, M. L., C. Gaillard, G. Wigger and R. Feies. 1995. Microsatellite-based parentage control in cattle. Anim. Genet. 26, 7-12 https://doi.org/10.1111/j.1365-2052.1995.tb02612.x
  9. Halverson, J. L. and J. W. Edwards. 2000. Microsatellite polymorphism in dog breeds-the AKC parent club study. Proc. 27th ISAG Conf. Anim. Genet. pp 19
  10. Jeffreys, A. J., V. Wilson and S. L. Thein. 1985. Hypervariable minisatellite regions in human DNA. Nature 314, 67-73 https://doi.org/10.1038/314067a0
  11. Kakoi, H., S. Nagata and M. Kurosawa. 2000. Microsatellite DNA testing for parentage verification of Thoroughbreds. Pros. 27th ISAG Conf. Anim. Genet. pp. 90
  12. Kim, G. W., J. W. Lee, T. S. Park, K. S. Cho, Y. H. Shin, S. E. Kim and J. Y. Yoo. 2004. A survey on the current situation and prospect of pet raising by socio-economic status. Korean J. Comp. Anim. Sci. 1, 89-101
  13. Lesic, R., M. Pierpaoli, Z. S. Biro, L. Szemethy, B. Ragni, F. Vercillo and E. Randi. 2006. Bayesian analyses of admixture in wild and domestic cats(Felis silvestris) using linked microsatellite loci. Mol. Ecol. 15, 119-131 https://doi.org/10.1111/j.1365-294X.2005.02812.x
  14. Leland, H. H. and H. Leroy. 2000. Genetics. International edition, Mcgrowhill
  15. Litt, M. and J. A. Luty. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397-401
  16. Lyons, L. A., A. E. Young, R. F. Grahn and H. R. Roberts. 2002. Genetic diversity of the domestic cats breeds. Proc. 28th ISAG Conf. Anim. Genet. pp 156
  17. Marshall, T. C., J. Slate, L. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639-655 https://doi.org/10.1046/j.1365-294x.1998.00374.x
  18. Menotti-Raymond, M., V. A. David, J. C. Stephens, L. A. Lyons and S. J. O'Brien. 1997. Genetic individualization of domestic cats using feline STR loci for forensic applications. J. Forensic Sci. 42, 1039-1051
  19. Putnova, L., A. Knoll, V. Dvorak and J. Dvorak. 2003. A novel porcine microsatellite panel for the identification of individuals and parentage control in the Czech Republic. Czech. J. Anim. Sci. 48, 307-314
  20. Shin, K. J., J. H. Choi and C. Y. Kim. 1999. Forensic odontology and DNA typing in individual identification. Korean J. Oral Med. 24, 479-487
  21. Singh, A., A. Gaur, K. Shailaja, B. S. Bala and L. Singh. 2004. A novel microsatellite (STR) marker for forensic identification of big cats in India. Forensic Sci. In't. 141, 143-147 https://doi.org/10.1016/j.forsciint.2004.01.015
  22. Tozaki, T., H. Kakoi, S. Mashima, K. L. Hirota, T. Hasegawa, N. Ishida, N. Miura, N. H. Choi-Miura and M. Tomita. 2001. Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci. J. Vet. Med. Sci. 63, 1191-1197 https://doi.org/10.1292/jvms.63.1191
  23. Yoon, D. H., J. D. Oh, J. H. Lee, H. S. Kong, B. W. Cho, J. D. Kim, K. J. Jeon, C. Y. Jo, G. J. Jeon and H. K. Lee. 2005. Establishment of individual identification system based on microsatellite polymorphism in Hanwoo. Asian-Aust. J. Anim. Sci. 18, 762-766 https://doi.org/10.5713/ajas.2005.762