Enhancement of biodegradability of the Refractory Organic Substances in Aqueous Solution with Discharged Water Generating (DWG) System

방전시스템(Discharged Water Generator)을 이용한 난분해성 물질의 생분해능 향상에 관한 연구

  • 여인호 (한국과학기술원 건설 및 환경공학과) ;
  • 류승민 (한국과학기술원 건설 및 환경공학과) ;
  • 박희경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2005.10.13
  • Accepted : 2005.12.20
  • Published : 2006.02.15

Abstract

Innovated technique to oxidize pollutants has been developed. The technique for this study uses plasma discharge in 2-phase (Air-Water) and is called Discharged Water Generating (DWG) system. It produces electric arc which generates not only the physical decomposing power against the pollutants but also oxidants to sterilize pollutants depending on the inlet gas species. These physical and chemical products play an important role in COD decrease and biodegradability enhancement. The enhancement of biodegradability for the refractory organic substances in aqueous solution was estimated in this study. Argon discharge reduced NBDCOD of EDTA from 58.7mg/L to 38.8mg/L, but oxygen discharge and ozonation reduced it to 37.74mg/L and 38.73mg/L respectively. Furthermore, Argon discharge changed 1181mg/L of NBDCOD of dye effluent into 606mg/L but oxygen discharge and ozonation changed it into 888mg/L and 790mg/L respectively.

Keywords

References

  1. 강용태, 현길수 (1999) 고율의 미량오염물질 제거를 이휘 생물활성탄 공정의 운영방법 개선, 한국수처리기술연구회, 7(4), pp. 3-11
  2. 김수명, 고경숙 (1998) H2O2/UV를 이용한 생물학적 난분해성 유기오염물의 산화적 분해, 대한환경공학회, 20(10), pp. 1425-1434
  3. 류승민, 박희경, 이봉주 (2004) 2계면 플라즈마 방전시스템(DBD system)의 특징 및 소독제로서 방전수의 사용 가능성에 대한 연구, 상하수도학회지, 18, pp. 529-536
  4. 모세영, 김만수, 장홍기, 이경재 (1999) 수용액 속의 난분해성 유기화합물의 초음파분해 특성, 대한환경공학회, 21(4), pp. 739-752
  5. 배병욱, 정의석, 김유리 (1998) 전자선 조사를 이용한 침출수의 난분해성 유기물 처리, 대한환경공학회, 20(4), pp. 567-574
  6. 이찬기, 허인량, 김영광 (1996) Fenton 산화를 이용한 단순 매립지 침출수의 난분해성 유기물과 색도의 제거, 대한환경공학회, 18(1), pp. 43-54
  7. Rengao Song, Chris Donohoe, Roger Minear, Paul Westerhoff, Kenan Ozekin and Gary Amy (1996) Empirical modelin of bromate formation during ozonation of Bromidecontaining waters, Water Research, 30(5), pp. 1161-1168 https://doi.org/10.1016/0043-1354(95)00302-9
  8. Idil Arslan Alaton, Isil Akmehmet Balcioglu, Detlef W. Bahnemann (2002) Advanced oxidation of a reactive dyebath effluent: Comparison of $O_3,\;H_2O_2/UV-C$ and TiO2/UV-A processes, Water Research, 36(6), pp. 1143-1154 https://doi.org/10.1016/S0043-1354(01)00335-9
  9. J. Pinart, M. Smirdec, M.-E. Pinart, J.J. Aaron, Z. Benmansour, M. Goldman and A. Goldman (1996) Quantitative study of the formation of inorganic chemical species following corona discharge-I. Production of $HNO_2\;and\;HNO_3$ in a composition- controlled, humid atmosphere, Atmospheric environment, 30(4), pp. 129-132 https://doi.org/10.1016/1352-2310(95)00231-M
  10. V. Camel, A. Bermond (1998) The use of ozone and associated oxidation processes in drinking water treatment, Water Research, 32(3), pp. 3208-3222 https://doi.org/10.1016/S0043-1354(98)00130-4
  11. Yamazaki M., Sawaai T., Yamazaki L., and Kawaguchi, S. (1983) Combined r-Ray Irradiation-Activated Sludge Treatment of Humic Acid Sludge Treatment of Humic Acid Solution from Landfill Leachate, Water Research, 17(12), pp. 1811-1814 https://doi.org/10.1016/0043-1354(83)90204-X