DOI QR코드

DOI QR Code

Effects of Arsenic (AsIII) on Lipid Peroxidation, Glutathione Content and Antioxidant Enzymes in Growing Pigs

  • Wang, L. (Feed Science Institute, Zhejiang University) ;
  • Xu, Z.R. (Feed Science Institute, Zhejiang University) ;
  • Jia, X.Y. (Feed Science Institute, Zhejiang University) ;
  • Jiang, J.F. (Feed Science Institute, Zhejiang University) ;
  • Han, X.Y. (Feed Science Institute, Zhejiang University)
  • 투고 : 2005.07.05
  • 심사 : 2005.12.23
  • 발행 : 2006.05.01

초록

This experiment was conducted to investigate the effect of arsenic ($As^{III}$) on lipid peroxidation, glutathione content and antioxidant enzymes in growing pigs. Ninety-six Duroc-Landrace-Yorkshire crossbred growing pigs (48 barrows and 48 gilts, respectively) were randomly assigned to four groups and each group was randomly assigned to three pens (four barrows and four gilts). The four groups received the same corn-soybean basal diet which was supplemented with 0, 10, 20, 30 mg/kg As respectively. Arsenic was added to the diet in the form of $As_2O_3$. The experiment lasted for seventy-eight days after a seven-day adaptation period. Malondialdehyde (MDA) levels, glutathione (GSH) contents and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) activities were analyzed in serum, livers and kidneys of pigs. The results showed that pigs treated with 30 mg As/kg diet had a decreased average daily gain (ADG) (p<0.05) and an increased feed/gain ratio (F/G) (p<0.05) compared to the controls. The levels of MDA significantly increased (p<0.05), and the contents of GSH and the activities of SOD, CAT, GPx, GR and GST significantly decreased (p<0.05) in the pigs fed 30 mg As/kg diet. The results indicated that the mechanism of arsenic-induced oxidative stress in growing pigs involved lipid peroxidation, depletion of glutathione and decreased activities of some enzymes, such as SOD, CAT, GPx, GR and GST, which are associated with free radical metabolism.

키워드

참고문헌

  1. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Asada, K., M. Takahashi and M. Nagate. 1974. Assay and inhibitors of spinach suoeroxide dismutase. Agric. Biol. Chem. 38:471-473 https://doi.org/10.1271/bbb1961.38.471
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Carlberg, I. and B. Mannervik. 1985. Glutathione reductase. Methods Enzymol. 113:484-485 https://doi.org/10.1016/S0076-6879(85)13062-4
  5. Cunningham, M. L., M. J. Zvelebi and A. H. Fairlamb. 1994. Mechanism of inhibition of trypnothione reductase and glutathione reductase by trivalent arsenicals. Eur. J. Biochem. 221:285-295 https://doi.org/10.1111/j.1432-1033.1994.tb18740.x
  6. Czarnecki, G. L. and D. H. Baker. 1985. J. Anim. Sci. 60(2):440- 450 https://doi.org/10.2527/jas1985.602440x
  7. Donoghue, D. J., H. Hairstone, C. V. Cope, M. J. Barthlomew, and D. D. Wagner. 1994. Incurred arsenc residules in chicken eggs. J. Food Prot. 57(3):218-223 https://doi.org/10.4315/0362-028X-57.3.218
  8. Ellman, G. L., 1959. Tissue sulfhydryl groups. Arch. Biochem. 82:70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  9. Falkner, K. C., G. P. McCallum, M. G. Cherian and J. R. Bend. 1993. Effects of acute sodium arsenite administration on the pulmonary chemical metabolizing enzymes, cytochrome P-450 monooxygenase, NAD(P)H: quinone acceptor oxidoreductase and glutathione-S-transferase in guinea pig: comparison with effects in liver and kidney. Chem. Biol. Interact. 86:51-68 https://doi.org/10.1016/0009-2797(93)90111-B
  10. Flohe, L. and W. A. Gunzler. 1984. Assays of glutathione peroxidase. Methods Enzymol. 105:114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  11. Flora, S. J. S., Dubey Rupa, G. M. Kannan, R. S. Chauhan, B. P. Pant and D. K. Jaiswal. 2002. Meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats. Toxicol. Letters 132:9-17 https://doi.org/10.1016/S0378-4274(02)00034-6
  12. Habig, W. H., M. J. Pabst and W. B. Jakoby. 1974. Glutathione Stransferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139
  13. Hei, T. K., C. R. Geard and E. J. Hall. 1984. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse 10T1/2 cells. Int. J. Radiat. Oncol. Biol. Phys. 10:1255-1259 https://doi.org/10.1016/0360-3016(84)90328-6
  14. Holcman, A., S. Malovrh and V. Knex. 2001.The effect of diet containing arsenic(III) oxide on the traits of eggs. Zbornik Biotechniske Fakalter Univerze Ljubljani. Kmetijstvo, Zootehnika 78(2):211-218
  15. Holcman, A. and V. Stibilj. 1997.Asenic residuls in eggs from laying hens fed with a diet containing arsenic (III) oxide. Arch. Environ. Contam. Toxicol. 32(4):407-410 https://doi.org/10.1007/s002449900204
  16. Hughes, M. F. 2002. Arsenic toxicity and potential mechanisms of action. Toxicol. Letters 33:1-16 https://doi.org/10.1016/0378-4274(86)90066-4
  17. IARC, 1987. Arsenic and arsenic compounds (Group 1). In: IARC monographs on the evaluation of the carcinogenic risks to humans. Supplement 7, date accessed: 6 February 2003
  18. Imlay, J. A. and S. Linn. 1988. DNA damage and oxygen radical toxicity. Sci. 240:1302-1309 https://doi.org/10.1126/science.3287616
  19. Lee, T. C. and I. C. Ho. 1995. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch. Toxicol. 69:498-508 https://doi.org/10.1007/s002040050204
  20. Keyse, S. M. and R. M. Tyrell. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium arsenite. Proc. Natl. Acad. Sci. USA 86:99-103
  21. Kirkman, M. N. and G. F. Gaetani. 1984. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA. 81:4343-4347
  22. Kono, Y. and I. Fridovich. 1982. Superoxide radicals inhibit catalase. J. Biol. Chem. 257:5751-5754
  23. Liu, L., J. R. Trimarchi, P. Navarro, M. A. Blasco and D. L. Keefe. 2003. Oxidative stress contributes to arsenic induced telomere attrition, chromosomal instability and apoptosis. J. Biol. Chem. 278:31998-32004 https://doi.org/10.1074/jbc.M303553200
  24. Liu, S. X., M. Athar, I. Lippai, C. Waldren and T. K. Hei. 2001. Induction of oxygen radicals by arsenic: implications for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA. 98:1643-1648
  25. Maiti, S. and A. K. Chatterjee. 2000. Differential response of cellular antioxidant mechanism of liver and kidney to arsenic exposure and its relation to dietary protein deficiency. Environ. Toxicol. Pharm. 8:227-235 https://doi.org/10.1016/S1382-6689(00)00046-6
  26. Maiti, S. and A. K. Chatterjee. 2001. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch. Toxicol. 75(9):531-537 https://doi.org/10.1007/s002040100240
  27. Mandal, B. K. and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235 https://doi.org/10.1016/S0039-9140(02)00268-0
  28. Morrison, L. L. and E. R. Chaves. 1983. Selenlum-arsenic interaction in the weanling pigs. Can. J. Anim. Sci. 63(1):239- 246 https://doi.org/10.4141/cjas83-028
  29. Ng, J. C., L. Qi, J. Wang, X. Xiao, M. Shahin, M. R. Moore and A. S. Prakash. 2001. Mutations in C57BI/6J and metallothionein knock-out mice induced by chronic exposure to sodium arsenate in drinking water. In: (W. R. Chappell, C. O. Abernathy and R. L. Calderon). Arsenic Exposure and Health Effects. Elsevier, pp. 231-242
  30. Ng, J. C., A. A. Seawright, L. Qi, C. M. Garnett, B. Chiswell and M. R. Moore. 1999. Tumors in mice induced by exposure to sodium arsenate in drinking water. In: (Ed. W. R. Chappell, C. O. Abernathy and R. L. Calderon), Arsenic Exposure and Health Effects. Elsevier, pp. 217-223
  31. Ramos, O., L. Carrizales, L. Yanez, L. Mejia, L. Batres, D. Ortiz and F. Diaz-Barriga. 1995. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ. Health Perspect. 103(Suppl 1):85- 98 https://doi.org/10.1289/ehp.95103s485
  32. Searle, A. J. and R. Wilson. 1980. Glutathione peroxide effect of hydroxyl and bromine free radicals on enzyme activity. Int. J. Radiat. Biol. 37:213-217 https://doi.org/10.1080/09553008014550261
  33. Singh, T. S. and K. K. Pant. 2004. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technol. 36:139-147 https://doi.org/10.1016/S1383-5866(03)00209-0
  34. Styblo, M., S. V. Serves, W. R. Cullen and D. J. Thomas. 1997. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 10:27-33 https://doi.org/10.1021/tx960139g
  35. Vreman, K., N. G. van der Veen, E. J. van der Mollen and W.G. de Ruig. 1986. Transfer of cadmium, lead, mercury and arsenic from feed into milk and various tissues of dairy cows: chemical and pathological data. Netherlands Journal of Agric. Sci. 34(2):129-144
  36. Wang, T. S., Y. F. Shu, Y. C. Liu, K. Y. Jan and H. Huang. 1997. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicol. 121:229-37 https://doi.org/10.1016/S0300-483X(97)00071-1
  37. Wang, T. S. and H. Huang. 1994. Active oxygen species are involved in the induction of micronuclei in XRS-5 cells. Mutagenesis 9:253-257 https://doi.org/10.1093/mutage/9.3.253
  38. Wills, E. D. 1966. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 99:667-676 https://doi.org/10.1042/bj0990667
  39. Xu, A., L. J. Wu, R. Santella and T. K. Hei. 1999. Role of reactive oxygen species in the mutagenicity and DNA damage induced by crocidolite fibers in mammalian cells. Cancer Res. 59:5615- 5624
  40. Yu, Shiguang and A. C. Beynen. 2000. High arsenic raises kidnek copper and lows plasma copper concentrstions in rats. Biol. Trace Element Res. 81:63-70 https://doi.org/10.1385/BTER:81:1:63
  41. Zaman, K., R. S. MacGill, J. E. Johnson, S. Ahmad and R. S. Pardini. 1995. An insect model for assessing oxidative stress related to arsenic toxicity. Arch. Insect Biochem. Physiol. 29:199-210 https://doi.org/10.1002/arch.940290209

피인용 문헌

  1. Effects of different selenium sources and levels on serum biochemical parameters and tissue selenium retention in rats vol.3, pp.2, 2009, https://doi.org/10.1007/s11703-009-0030-1
  2. Arsenic interactions with lipid particles containing iron vol.31, pp.S1, 2009, https://doi.org/10.1007/s10653-008-9236-z
  3. Oxidative stress induced by the chemotherapeutic agent arsenic trioxide vol.4, pp.4, 2014, https://doi.org/10.1007/s13205-013-0170-0
  4. The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio) vol.22, pp.5, 2015, https://doi.org/10.1007/s11356-014-2896-6
  5. Histopathological and biochemical effects of cyanobacterial cells containing microcystin-LR on Tilapia fish vol.30, pp.1-2, 2016, https://doi.org/10.1111/wej.12169
  6. Arjunolic Acid Improves the Serum Level of Vitamin B12 and Folate in the Process of the Attenuation of Arsenic Induced Uterine Oxidative Stress pp.1559-0720, 2017, https://doi.org/10.1007/s12011-017-1077-0
  7. Betulinic acid, natural pentacyclic triterpenoid prevents arsenic-induced nephrotoxicity in male Wistar rats pp.1618-565X, 2017, https://doi.org/10.1007/s00580-017-2548-6
  8. Effects of Soy Isoflavone on Performance, Meat Quality and Antioxidative Property of Male Broilers Fed Oxidized Fish Oil vol.20, pp.8, 2006, https://doi.org/10.5713/ajas.2007.1252
  9. Effects of Oxidative Stress on Growth Performance, Nutrient Digestibilities and Activities of Antioxidative Enzymes of Weanling Pigs vol.20, pp.10, 2006, https://doi.org/10.5713/ajas.2007.1600
  10. Differential Expression of Cytochrome P450 Genes Regulate the Level of Adipose Arachidonic Acid in Sus Scrofa vol.21, pp.7, 2006, https://doi.org/10.5713/ajas.2008.80059
  11. Cloning of Chicken Microsomal Glutathione S-transferase 1 Gene (MGST1) and Identification of Its Different Splice Variants vol.22, pp.2, 2006, https://doi.org/10.5713/ajas.2009.80166
  12. Effects of Ligustrum lucidum Fruits on Growth Performance, Antioxidation and Meat Quality in Arbor Acres Broilers vol.22, pp.5, 2009, https://doi.org/10.5713/ajas.2009.80537
  13. Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice vol.48, pp.4, 2010, https://doi.org/10.1016/j.fct.2010.01.016
  14. Spirulina platensis ameliorates arsenic-mediated uterine damage and ovarian steroidogenic disorder vol.3, pp.1, 2006, https://doi.org/10.1139/facets-2017-0099
  15. Arsenic-induced uterine apoptotic damage is protected by ethyl acetate fraction of Camellia sinensis (green tea) via Bcl-2-BAX through NF-κB regulations in Wistar rats vol.28, pp.30, 2006, https://doi.org/10.1007/s11356-021-13457-w