밭토양에서 옥살릭산과 희석요인에 의한 자체 인산의 이동 특성

Mobilization Characteristics of Indigenous Phosphate by Oxalic Acid and Dilution Factors in Upland Soils

  • 정덕영 (충남대학교 농업생명과학대학 생물환경화학전공) ;
  • 이교석 (충남대학교 농업생명과학대학 생물환경화학전공)
  • Chung, Doug-Young (Department of Bioenvironmental Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Kyo-Suk (Department of Bioenvironmental Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 투고 : 2005.11.08
  • 심사 : 2005.12.26
  • 발행 : 2006.02.28

초록

토양내에서 인의 축적은 농업과 환경에 심각한 문제로 대두되고 있다. 본 연구에서는 토양입자표면에 흡착된 인산이온의 치환방법을 조사하기 위하여 실험실 규모의 연구를 수행하였다. 토양시료는 충남 논산에 위치한 구릉지 밭토양 4개 지점에서 0-10 cm와 10-20 cm 깊이의 토양시료를 채취하였다. 인의 가용화를 조사하기 위하여 $10^{-5}$ to $10^{-1}cmol\;L^{-1}$의 옥살릭산을 1:1, 1:2.5, 1:5, 1:10 및 1:20의 희석비율로 처리하여 조사하였다. 인 가용화는 희석비율이 1:5 이하의 경우 옥살릭산의 농도가 $5{\times}10^{-4}cmol\;L^{-1}$ 이상으로 처리될 때 증가가 시작되었다. 그리고 희석비율이 1:10과 1:20 일 때 인가용화 시작점은 1:5 이하와 비교 시 $10^{-4}cmol\;L^{-1}$에서 $5{\times}10^{-5}cmol\;L^{-1}$로 낮아짐을 알 수 있었다. 본 연구에서 얻는 그래프의 곡선적정 결과 희석배수가 1:5 이하에서는 지수증가의 형태이나 1:10 이상의 경우 S자 만곡형으로 인의 가용화는 희석배수에 의해 많은 영향을 받는 것으로 조사되었다.

Phosphorus accumulation in fertilized soils becomes serious problem for agriculture and the environment. In this investigation, we conducted a laboratory scale investigation to find the most desirable displacement methods of the adsorbed phosphate onto the soil particle surfaces. Soil samples which contained high amount of phosphate were collected at two different depths (0-10 cm and 10-20 cm) from four locations at the moderate highland located in Nonsan, Chungnam. To observe the mobilization of solid-phase phosphate, soil samples were equilibrated with oxalic acid solutions ranging from $10^{-5}$ to $10^{-1}cmol\;L^{-1}$ with the dilution factors of 1:1, 1:2.5, 1:5, 1:10, and 1:20. The mineralized P sharply increased as the concentration of oxalic acid was greater than $5{\times}10^{-4}cmol\;L^{-1}$ under dilution factors of 1:1, 1:2.5, and 1:5. The breaking concentration of oxalic acid was lowered to $10^{-4}cmol\;L^{-1}$ and $5{\times}10^{-5}cmol\;L^{-1}$ for dilution factors of 1:10 and 1:20, respectively. The curve fit obtained from the graph can be described by exponential growth when the dilution factors were 1:1, 1:2.5, and 1:5 while the sigmoidal shape for 1:10 and 1:20, showing the mineralization of P were significantly dependent on the dilution factor.

키워드

참고문헌

  1. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations: Effect of time, cadmium loading, pH, and calcium. Water Air Soil Pollut. 21 :105-114 https://doi.org/10.1007/BF00163616
  2. Cunningham, J. E., and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 58: 1451-1458
  3. Dynes, J. J., and P. M. Huang. 1997. Influence of organic acids on selenite sorption by poorly ordered aluminum hydroxides. Soil Sci. Soc. Am. J. 61:772-783 https://doi.org/10.2136/sssaj1997.03615995006100030010x
  4. Geelhoed, J. S., T. Hiemstra, and W. H. Van Riemsdijk. 1998. Competition interaction between phosphate and citrate on goethite. Environ. Sci. Technol. 32:2119-2123 https://doi.org/10.1021/es970908y
  5. Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate sulubilization by gram negative bacteria. Biol. Agric. Hortic. 12:185-193 https://doi.org/10.1080/01448765.1995.9754736
  6. Kafkafi, U., B. Bar-Yosef, R. Rosenberg, and G. Sposito. 1988. Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Am. J. 52: 1585-1589 https://doi.org/10.2136/sssaj1988.03615995005200060012x
  7. Lopez-Hernandez, D. G. Siegert, and J. V. Rodriguez. 1986. Competitive adsorption of phosphate with malate and oxalate by tropical soils. Soil Sci. Soc. Am. J. 50:1460-1462 https://doi.org/10.2136/sssaj1986.03615995005000060016x
  8. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London
  9. Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In Methods of Soil analysis, Part 2. Chemical and Microbiological Properties, 2nd Ed. A.L. Page, R. H. Miller, and D. R.Keeney eds.). ASA, Madison, WI
  10. Parfitt, R. L., A. R. Fraser, J. D. Russell, and V. C. Farmer. 1977. Adsorption on hydrous oxides. I. Oxalate, benzoate and phosphate on gibbsite. J. Soil Sci. 28:40-47 https://doi.org/10.1111/j.1365-2389.1977.tb02294.x
  11. Parfitt, R. L. 1978. Anion adsorption by soils and soil materials. Agron.30:1-50
  12. Sparks, D. L., and P. M. Jardine. 1984. Comparison of batch and miscible displacement techniques to describe K-Ca exchange in pure and in mixed systems. Soil Sci. 138: 115-122 https://doi.org/10.1097/00010694-198408000-00004
  13. Violante, A. C. Colombo, and A. Buondonno. 1991. Competitive adsorption of phosphate and oxalate by aluminum oxide. Soil Sci. Soc. Am. J. 55:65-70 https://doi.org/10.2136/sssaj1991.03615995005500010011x
  14. Violante, A., and L. Gianfreda. 1993. Competition in adsorption between phosphate and oxalate on an aluminum hydroxide montmorillonite complex. Soil Sci. Soc. Am. J. 57: 1235-1241 https://doi.org/10.2136/sssaj1993.03615995005700050013x
  15. Violante, A., and L. Gianfreda. 1995. Adsorption of phosphate on variable charge minerals: competition effect of organic ligands. In Huang, P. M., Berthelin, J., Bollag, J-M, McGill, W. B., and Page, A. L. (Eds). Environmental effect of soil component interactions. CRC Press, Boca Raton. pp. 29-38