Beyond-CMOS: Impact of Side-Recess Spacing on the Logic Performance of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs

  • Kim, Dae-Hyun (Microsystems Technology Laboratory (MTL), Massachusetts Institute of Technology (MIT)) ;
  • del Alamo, Jesus A. (Microsystems Technology Laboratory (MTL), Massachusetts Institute of Technology (MIT)) ;
  • Lee, Jae-Hak (Seoul National University) ;
  • Seo, Kwang-Seok (Seoul National University)
  • Published : 2006.09.30

Abstract

We have been investigating InGaAs HEMTs as a future high-speed and low-power logic technology for beyond CMOS applications. In this work, we have experimentally studied the role of the side-recess spacing $(L_{side})$ on the logic performance of 50 nm $In_{0.7}Ga_{0.3}As$ As HEMTs. We have found that $L_{side}$ has a large influence on the electrostatic integrity (or short channel effects), gate leakage current, gate-drain capacitance, and source and drain resistance of the device. For our device design, an optimum value of $L_{side}$ of 150 nm is found. 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs with this value of $L_{side}$ exhibit $I_{ON}/I_{OFF}$ ratios in excess of $10^4$, subthreshold slopes smaller than 90 mV/dec, and logic gate delays of about 1.3 ps at a $V_{CC}$ of 0.5 V. In spite of the fact that these devices are not optimized for logic, these values are comparable to state-of-the-art MOSFETs with similar gate lengths. Our work confirms that in the landscape of alternatives for beyond CMOS technologies, InAs-rich InGaAs FETs hold considerable promise.

Keywords

References

  1. G. E. Moore, 'Cramming more components onto integrated circuits', Electronics, Vol. 38, No. 8, pp. 114-117, April 19, 1965
  2. M. T. Bohr, 'Nanotechnology Goals and Challenges for Electronic Applications', IEEE Trans. Nanotechnology, Vol. 1, No. 1., pp. 56-62, 2002 https://doi.org/10.1109/TNANO.2002.1005426
  3. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, 'Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes', Appl. Phys. Lett., Vol. 80, pp. 3817-3819, 2002 https://doi.org/10.1063/1.1480877
  4. M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, 'Drain voltage scaling in carbon nanotube transistors', Appl. Phys. Lett., Vol. 83, pp. 2435-2437, 2003 https://doi.org/10.1063/1.1610791
  5. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, 'Epitaxial core-shell and core-multishell nanowire heterostructures', Nature, Vol. 420, pp. 57-61, 2002 https://doi.org/10.1038/nature01141
  6. Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, and S. Hiyamizu, 'Pseudomorphic $In_{0.52}Al_{0.48}As/In_{0.7}Ga_{0.3}As$ HEMTs With an Ultrahigh $f_T$ of 562 GHz', IEEE Electron Device Letters, Vol. 23, No. 10, pp. 573-575, 2002 https://doi.org/10.1109/LED.2002.802667
  7. K. Murata, K. Sano, H. Kitabayashi, S. Sugitani, H. Sugahara, and T. Enoki, '100-Gb/s Multiplexing and Demultiplexing IC Operations in InP HEMT Technology', IEEE Journal of Solid-State Circuits, Vol. 39, No. 1, pp. 207-213, 2004 https://doi.org/10.1109/JSSC.2003.820854
  8. D. Streit, R. Lai, A. Oki, and A. Gutierrez-Aitken, 'InP HEMT and HBT Applications Beyond 200 GHz', in Proc. $14^{th}$ IEEE Indium Phosphide and Related Material Conference (IPRM), pp. 11-14, May 2002 https://doi.org/10.1109/ICIPRM.2002.1014077
  9. C. W. Pobanz, M. Matloubian, M. Lui, H.-C. Sun, M. Case, C. M. Ngo, P. Janke, T. Gaier, and L. Samoska, 'A High-Gain Monolithic D-Band InP HEMT Amplifier', IEEE Journal of Solid-State Circuits, Vol. 34, No. 9, pp. 1219-1224, 1999 https://doi.org/10.1109/4.782079
  10. K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu, T. Matsui, 'Nanogate InP-HEMT Technology for Ultrahigh-Speed Performance', in $16^{th}$ IEEE Indium Phosphide and Related Materials Conference (IPRM), pp. 721-726, May 2004 https://doi.org/10.1109/ICIPRM.2004.1442827
  11. T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, '30-nm Two-Step Recess Gate InP-Based InAlAs/InGaAs HEMTs', IEEE Tran. Electron Devices, Vol. 49, No. 10, pp. 1694-1700, 2002 https://doi.org/10.1109/TED.2002.803646
  12. D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, 'The Impact of Side-Recess Spacing on the Logic Performance of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs', in $18^{th}$ IEEE Indium Phosphide and Related Materials Conference (IPRM), pp. 177-180, May 2006
  13. T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, and Y. Ishii, 'High-Performance $0.1-{\mu}m$ Gate Enhancement-Mode InAlAs/InGaAs HEMT's Using Two-Step Recessed Gate Technology', IEEE Tran. Electron Devices, Vol. 46, No. 6, pp. 1074-1080, 1999 https://doi.org/10.1109/16.766866
  14. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, 'Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications', IEEE Trans. Nanotechnology, Vol. 4, No. 2, pp. 153-158, 2005 https://doi.org/10.1109/TNANO.2004.842073
  15. S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopcic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, M. Bohr, 'A 90 nm Logic Technology Featuring 50 nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 ${\mu}m^2$ SRAM Cell', in Int. Electron Devices Meeting Tech. Dig., pp. 61-64, December 2002 https://doi.org/10.1109/IEDM.2002.1175779
  16. D. R. Greenberg and Jesus A. del Alamo, 'Nonlinear Source and Drain Resistance in Recessed-Gate Heterostructure Field-Effect Transistors', IEEE Tran. Electron Devices, Vol. 43, No. 8, pp. 1304-1306, 1996 https://doi.org/10.1109/16.506784
  17. D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, 'Performance Evaluation of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs For Beyond-CMOS Logic Applications', in Int. Electron Devices Meeting Tech. Dig., pp. 455-458, December 2005