NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices

  • Jin, Seong-Hoon (School of Electrical Engineering and Computer Science and Nano Systems Institute-NCRC, Seoul National University) ;
  • Park, Chan-Hyeong (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, In-Young (Department of Electronic Engineering, Gyeongsang National University) ;
  • Park, Young-June (School of Electrical Engineering and Computer Science and Nano Systems Institute-NCRC, Seoul National University) ;
  • Min, Hong-Shick (School of Electrical Engineering and Computer Science and Nano Systems Institute-NCRC, Seoul National University)
  • 발행 : 2006.03.31

초록

We introduce our in-house program, NANOCAD, for the modeling and simulation of carrier transport in nanoscale MOSFET devices including quantum-mechanical effects, which implements two kinds of modeling approaches: the top-down approach based on the macroscopic quantum correction model and the bottom-up approach based on the microscopic non-equilibrium Green’s function formalism. We briefly review these two approaches and show their applications to the nanoscale bulk MOSFET device and silicon nanowire transistor, respectively.

키워드

참고문헌

  1. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Wien, Austria: Springer-Verlag, 1984
  2. W. S. Choi, J. G. Ahn, Y. J. Park, H. S. Min, and C. G. Hwang, 'A Time Dependent Hydrodynamic Device Simulator SNU-2D With New Discretization Scheme and Algorithm,' IEEE Trans. on CAD, vol. 13, no. 7, pp. 899-908, July 1994 https://doi.org/10.1109/43.293947
  3. M. G. Ancona and H. F. Tiersten, 'Macroscopic physics of the silicon inversion layer,' Phys. Rev. B, vol. 35, no. 15, pp. 7959-7965, May 1987 https://doi.org/10.1103/PhysRevB.35.7959
  4. M. G. Ancona and G. J. Iafrate, 'Quantum correction to the equation of state of an electron gas in a semiconductor,' Phys. Rev. B, vol. 39, no. 13, pp. 9536-9540, May 1989 https://doi.org/10.1103/PhysRevB.39.9536
  5. J.-R. Zhou and D. K. Ferry, 'Simulation of Ultra-Small GaAs MESFET Using Quantum Moment Equations,' IEEE Trans. on ED, vol. 39, no. 3, pp. 473-478, March 1992 https://doi.org/10.1109/16.123465
  6. H. L. Grubin, T. R. Govindan, and J. P. Kreskovsky, 'Transport via the Liouville equation and moments of quantum distribution functions,' Solid-State Electronics, vol. 36, no. 12, pp. 1697-1709, 1993 https://doi.org/10.1016/0038-1101(93)90216-D
  7. C. L. Gardner, 'The Quantum Hydrodynamic Model for Semiconductor Devices,' SIAM Journal on Applied Mathematics, vol. 54, no. 2, pp. 409-427, April 1994 https://doi.org/10.1137/S0036139992240425
  8. D. K. Ferry, R. Akis, and D. Vasileska, 'Quantum Effects in MOSFETs: Use of an Effective Potential in 3D Monte Carlo Simulation of Ultra-Short Channel Devices,' Proc. of IEDM, pp. 287-290, December 2000 https://doi.org/10.1109/IEDM.2000.904313
  9. M. G. Ancona, Z. Yu, R. W. Dutton, P. J. V. Voorde, M. Cao, and D. Vook, 'Density-gradient analysis of MOS tunneling,' IEEE Trans. on ED, vol. 47, no. 12, pp. 2310-2319, December 2000 https://doi.org/10.1109/16.887013
  10. Z. Yu, R. W. Dutton, and D. W. Yergeau, 'Macroscopic quantum carrier transport modeling,' Proc. of SISPAD, pp. 1-9, September 2001
  11. D. Connelly, Z. Yu, and D. W. Yergeau, 'Macroscopic Simulation of Quantum Mechanical Effects in 2-D MOS Devices via the Density Gradient Method,' IEEE Trans. on ED, vol. 49, no. 4, pp. 619-626, April 2002 https://doi.org/10.1109/16.992871
  12. E. Lyumkis, R. Mickevicius, O. Penzin, B. Polsky, K. El Sayed, A. Wettstein, and W. Fichtner, 'Simulation of Ultrathin, Ultrashort Double-Gated MOSFETs with the Density Gradient Transport Model,' Proc. of SISPAD, pp. 271-274, September 2002 https://doi.org/10.1109/SISPAD.2002.1034570
  13. J. R. Watling, A. R. Brown, A. Asenov, A. Svizhenko, and M. P. Anantram, 'Simulation of direct source-to-drain tunneling using the density gradient formalism: Non-equilibrium Green's function calibration,' Proc. of SISPAD, pp. 267-270, September 2002 https://doi.org/10.1109/SISPAD.2002.1034569
  14. S. Jin, Y. J. Park, and H. S. Min, 'A Numerically Efficient Method for the Hydrodynamic Density-Gradient Model,' Proc. of SISPAD, pp. 263-266, September 2003
  15. S. Jin, Y. J. Park, and H. S. Min, 'Simulation of Quantum Effects in the Nano-scale Semiconductor Device,' Journal of Semiconductor Technology and Science, vol. 4, no. 1, March 2004
  16. L. P. Keldysh, 'Diagram technique for nonequilibrium process,' Sov. Phys. JETP, vol. 20, no. 4, pp. 1018-1026, Apr. 1965
  17. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics. New York: Benjamin, 1962
  18. W. R. Frensley, 'Boundary conditions for open quantum systems driven far from equilibrium,' Rev. Mod. Phys., vol. 62, no. 3, pp. 745-791, July 1990 https://doi.org/10.1103/RevModPhys.62.745
  19. E. Wigner, 'On the Quantum Correction For Thermodynamic Equilibrium,' Phys. Rev., vol. 40, pp. 749-759, June 1932 https://doi.org/10.1103/PhysRev.40.749
  20. S. Jin, Y. J. Park, and H. S. Min, 'A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions,' submitted to Journal of Applied Physics, 2006 https://doi.org/10.1063/1.2206885
  21. S. Jin, 'Modeling of Quantum Transport in Nano-Scale MOSFET Devices,' Ph.D. dissertation, Seoul National University, Feb. 2006
  22. D. A. Antoniadis, I. J. Djomehri, K. M. Jackson, and S. Miller, Well-Tempered Bulk-Si NMOSFET Device Home Page, http://www-mtl.mit.edu/Well/, Microsystems Technology Laboratory, MIT
  23. Y. Taur, C. H. Wann, and D. J. Frank, '25 nm CMOS Design Considerations,' Proc. of IEDM, pp. 789-792, December 1998 https://doi.org/10.1109/IEDM.1998.746474
  24. J. Rammer, 'Quantum field-theoretical methods in transport theory of metals,' Rev. Mod. Phys., vol. 58, no. 2, pp. 323-359, Apr. 1986 https://doi.org/10.1103/RevModPhys.58.323
  25. G. D. Mahan, 'Quantum Transport Equation for Electric and Magnetic Fields,' Physics Reports, vol. 145, no. 5, pp. 251-318, 1987 https://doi.org/10.1016/0370-1573(87)90004-4
  26. S. Datta, Electronic Transport In Mesoscopic Systems. New York: Cambridge University Press, 1995
  27. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer series in solid-state sciences. Springer, 1996
  28. S. Datta, Quantum Transport: Atom to Transistor. Cambridge University Press, 2005
  29. C. Jacoboni and L. Reggiani, 'The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,' Rev. Mod. Phys., vol. 55, no. 3, pp. 645-705, July 1983 https://doi.org/10.1103/RevModPhys.55.645
  30. D. Esseni, A. Abramo, L. Selmi, and E. Sangiorgi, 'Physically Based Modeling of Low Field Electron Mobility in Ultrathin Single- and Double-Gate SOI n-MOSFETs,' IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2445-2455, Dec. 2003 https://doi.org/10.1109/TED.2003.819256