Effect of Medium Components on the Lipstatin Production by Streptomyces toxytricini

배지 성분이 Streptomyces toxytricini에서의 lipstatin 발효에 미치는 영향

  • Lim, Mi-Ok (Faculty of Pharmacy, Yeungnam University) ;
  • Yin, Wencui (Faculty of Pharmacy, Yeungnam University) ;
  • Lee, Ji-Seon (Faculty of Pharmacy, Yeungnam University) ;
  • Yu, Yeon-Su (Faculty of Biotechnology, Yeungnam University) ;
  • Kim, Sang-Dal (Faculty of Biotechnology, Yeungnam University) ;
  • Nam, Doo-Hyun (Faculty of Pharmacy, Yeungnam University)
  • Published : 2006.09.30

Abstract

In order to increase the productivity of lipstatin by Steptomyces toxytricini, the effect of medium components on the lipstatin production was investigated. Using TSB medium as a basal medium, a variety of carbon sources, nitrogen sources, lipid and fatty acids was supplemented into a fermentation medium. The seed culture of S. toxytricini grown in 25 ml TSB medium at $28^{\circ}C$ for 3 days with agitation at 200 rpm was inoculated in the size of 2% in fermentation media containing different components and fermented at $28^{\circ}C$ for 60 more hrs. In the examination of the effect of carbon sources, the best cell growth was observed in fermentation media supplemented with glucose or glycerol, but the lipstatin productivity was the highest in media containing lactose or sucrose. Among complex nitrogen sources, yeast extract was the best one for cell growth, but the highest lipstatin production was found in TSB media composed of 1.7% casitone and 0.3% soytone. The increased concentration of triolein as a lipid caused the promotion of cell growth but the significant suppression of lipstatin production. When 0.5% fatty acids were supplemented to fermentation medium, unsaturated fatty acids like linoleic or oleic acid suppressed cell growth as well as lipstatin production, but 2 times higher lipstatin production was achieved by stearic acid, a saturated fatty acid, differently from expectation.

Streptomyces toxytricini로부터 lipstatin생산을 최적화하기 위해, 배지 성분이 lipstatin생산에 미치는 영향을 조사하였다. 이를 위해 tryptic soy broth (TSB) 배지를 기본 배지로 하여 $28^{\circ}C$, 200 rpm 으로 3일간 배양하여 총 배양액(seed culture) 을 만들고, 여기에 다양한 탄소원, 질소원, 지질 및 지방산등을 함유한 TSB 배지에 2% 접종한 후 60시간 동안 주 발효를 실시한 후, 배지 중의 lipstatin양을 측정하였다. 탄소원 중에서 glucose와 glycerol을 첨가한 배지에서 균체가 가장 잘 성장하였지만, lipstatin생산에는 lactose나 sucrose가 가장 우수한 것으로 나타났다. 한편, 질소원으로는 yeast extract가 균체 성장에 가장 좋았지만, 1.7% casitone과 0.3% soytone으로 구성된 TSB 배지에서 lipstatin생산량이 가장 높게 나타났다. 또한 lipstatin생산을 증가시키기 위해 triolein을 발효 배지에 첨가한 결과, 균체 성장은 증가하였지만, lipstatin의 생산은 현저히 감소하는 경향을 보였다. 한편, lipstatin의 생합성 원료로 추정되는 지방산들을 발효 배지에 0.5% 첨가하여 발효를 실시한 결과, 불포화 지방산인 linoleic acid나 oleic acid를 첨가한 경우 S. toxytricini의 성장이 억제되었으나, 포화 지방산인 stearic acid를 첨가한 경우에는 균체성장 뿐만 아니라 lipstatin 생산량도 증가하였다.

Keywords

References

  1. 남두현. 1992. 방선균을 이용한 항생물질 발효. 미생물과 산업 18, 63-68
  2. Aharonowitz, Y. 1980. Nitrogen metabolite regulation of antibiotic biosynthesis. Ann. Rev. Microbiol. 34, 209-233 https://doi.org/10.1146/annurev.mi.34.100180.001233
  3. Demain, A.L., Y.M. Kennel, and Y. Aharonowitz. 1979. Carbon catabolite regulation of secondary metabusm, p.163-185. In A.T. Bull, D.C. Ellwood, and C. Ratledge (ed.) Microbial technology: current state, future prospects. Cambridge University Press, Cambridge
  4. Eisenreich, W., E. Kupfer, W. Weber, and A. Bacher. 1997. Tracer studies with crude U-13C-lipid mixtures. Biosynthesis of the lipase inhibitor lipstatin. J. Biol. Chem. 272, 867-874 https://doi.org/10.1074/jbc.272.2.867
  5. Goese, M., W. Eisenreich, E. Kupfer, W. Weber, and A. Bacher. 2000. Biosynthetic origin of hydrogen atoms in the lipase inhibitor lipstatin. J. Biol. Chem. 275, 21192-21196 https://doi.org/10.1074/jbc.M003094200
  6. Hochuli, E., E. Kupfer, R. Maurer, W. Meister, Y. Mercadal, and K. Schmidt. 1987. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxitricini. II. Chemistry and structure elucidation. J. Antibiot. 40, 1086-1091 https://doi.org/10.7164/antibiotics.40.1086
  7. Hollander, P.A., S.C. Elbein, I.B. Hirsch, D. Kelley, J. McGill, T. Taylor, S.R. Weiss, S.E. Crockett, R.A. Kaplan, J. Comstock, C.P. Lucas, P.A. Lodewick, W. Canovatchel, J. Chung, and I. Hauptman. 1998. Role of orlistat in the treatment of obese patients with type 2 diabetes. Diabetes Care 21, 1288-1294 https://doi.org/10.2337/diacare.21.8.1288
  8. Imanaka, T., Y. Moriyama, G.G. Ecsedi, T. Aoyagi, K. Amanumamoto, S. Ohkuma, and T. Takano. 1983. Esterastin: A potent inhibitor of lysosomal acid lipase. J. Biochem. 94, 1017-1020 https://doi.org/10.1093/oxfordjournals.jbchem.a134399
  9. Imanaka, T., K. Moto, S. Ohkuma, and T. Takano. 1981. Purification and properties of rabbit liver acid lipase (4-methylumbelliferyl oleate hydrolase). Biochim. Biophys. Acta. 665, 322-330 https://doi.org/10.1016/0005-2760(81)90017-5
  10. Martin, J.F. and A.L. Demain 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44, 230-251
  11. Weibel, E.K., P. Hadvary, E. Hochuli, E. Kupfer, and H. Lengsfeld. 1987. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. 40, 1081-1085 https://doi.org/10.7164/antibiotics.40.1081
  12. Zhi, J., A.T. Melia, C. Funk, A. Viger-Chougnet, G. Hopfgartner, and B. Lausecker. 1996. Metabolic profiles of minimally absorbed orlistat in obese/overweight volunteers. J. Clin. Pharmacol. 36, 1006-1011 https://doi.org/10.1177/009127009603601104